Overview of high-energy heavy-ion physics international cooperation

Central China Normal University With Personal bias

七届全国高能核物理大会暨第十三届会员代表大会 2019年10月8-12日 湖北 武汉 华中师范大学

QCD phase transition

"direct" info from the medium

modification of lowmass resonances

hard probes

based on particles produced in the early stage

soft probes

based on particles produced in the late stage

strangeness enhancement

> flow profile

> > ..etc

"non-direct" info from the medium

Heavy-ion program

u(0)	SECR
ac	5
State State State	
2	

Heavy-ion program-ion program

Heavy-ion program-ion program

High temperature and low $\mu_{\rm B}$: LHC, RHIC

- Global properties ($T, \eta/s...$) and collectivity
- Hard probes (jets, heavy quarks...)

Finite temperature and $\mu_{\rm B}$: RHIC-BES, NICA

- Critical point search
- Correlations, di-lepton production...

Low temperature and large $\mu_{\rm B}$: NICA, FAiR

Net baryon density n/ no Search rich structure of QCD phase diagram

• Equation-of-state at large $\mu_{\rm B}$, chiral symmetry...

	_	proton (existing)	
			HD
_			

Heavy-ion program

 proton	(existing)	
		2
		HD

Heavy-ion program

	_	proton (existing)	
			g)
			ſ
			HD
7			

Collaboration of China

RHIC-STAR

- 华中师范大学
- 复旦大学
- 湖州师范学院
- 中科院近代物理研究所
- 中国科学技术大学
- 山东大学
- 中科院应用物理研究所
- 清华大学

FAiR-CBM

- 三峡大学
- 华中师范大学
- 清华大学
- 重庆大学
- 中国科学技术大学
- 中科院近代物理研究所

USA RHIC

RHIC-PHENIX 北京大学

Japan J-PARC HI - HI (under plant Figures: Not to so

LHC-ALICE

- 华中师范大学
- 中国科学技术大学
- 复旦大学
- 中国原子能研究院

CSRm

LHC-LHCb

- 清华大学
- 华南师范大学 (NEW)
- 华中师范大学
- 武汉大学

China HIAF

Azimuthal anisotropy

- to the reaction plane (Ψ_{RP}) coefficients v_2 , v_3 , v_4 ... v_n
- Elliptic flow (v_2): spatial anisotropy pressure gradients leads to momentum anisotropy – hydrodynamics
- freeze-out conditions...

• Quantify anisotropy: Fourier decomposition of particle azimuthal distribution relative

Higher order flow: bring additional constraints on the initial conditions, η/s, EoS,

Azimuthal anisotropy

STAR Phys. Rev. Lett. 116 (2016) 062301

 Flow is dominated by hydrodynamic evolution of the QCD medium • At RHIC and LHC: $1 < (\eta/s)_{QGP} \leq 0.2$ — prefect fluid

Hard probes: medium tomography

- Produced in the early stage of heavy-ion collisions
 - Experience the full evolution of the QCD medium, and interact with particles in the medium and loss energy
- Efficient probes for understanding the transport properties of the medium
- **Nuclear modification factor**: R_{AA} sensitive to the presence of the medium

$$R_{
m AA}(p_{
m T}) = rac{{
m d}N_{
m AA}/{
m d}p_{
m T}}{< T_{
m AA} > {
m d}\sigma_{
m pp}/{
m d}p_{
m T}} egin{array}{l} {
m QCD metric} \ {
m QCD metric} \end{array}$$

• $R_{AA} = 1$, if there is no medium modification

Shopping list

- High p_T particles, jets
- Open heavy flavours, quarkonia $(J/\psi, \psi'... Y...)$

π⁰-hadron correlations

ALICE Phys. Lett. B763 (2016) 238

• Measurement has been extended to lower p_T w.r.t. di-hadron correlations

- and / or the bias on parton p_T spectra...
- Away side suppression at high p_T : hard parton energy loss
- \Rightarrow Away side enhancement at low p_T : favor the jet-medium excitation scenario

Near side enhancement: modification of jet fragmentation, quark- / gluon-jet ratio

Particle production in jets

Investigating medium modified fragmentation, effect seems to differ between baryons and mesons — further constraints on reference from data needed

```
v<sup>leading track</sup> > 5 GeV/c
                10
                              12
               p_{\tau} (GeV/c)
```

• Reference: PYTHIA smeared with background fluctuations

- K_S⁰: consistent with PYTHIA within errors — hint of low- p_T enhancement
- Λ : data significantly higher than **PYTHIA** at low p_T

Particle production in jets

Investigating medium modified fragmentation, effect seems to differ between baryons and mesons — further constraints on reference from data needed


```
leading track > 5 GeV/c
             10
            p_{\tau} (GeV/c)
```

• Reference: PYTHIA smeared with background fluctuations

- K_S⁰: consistent with PYTHIA within errors — hint of low- p_T enhancement
- Λ : data significantly higher than **PYTHIA** at low p_T

NEW ALICE LHC RUN-II data

- Higher statistics, precise measurements
- Extend to multi-strangeness sector

Open heavy-flavours (open charm and beauty particles)

- R_{AA}: Radiative energy loss vs. collisional energy loss
 - Mass and color charge dependence
- Elliptic flow
 - \rightarrow Low- p_T : initial conditions and degree of thermalization of HF in QGP^{Energy (GeV)}
 - \rightarrow High- p_T : path-length dependence of HF in-medium energy loss

Open heavy-flavours (open charm and beauty particles)

- R_{AA}: Radiative energy loss vs. collisional energy loss
 - Mass and color charge dependence
- Elliptic flow
 - → Low-p_T: initial conditions and degree of thermalization of HF in QGP^{Energy (GeV)}
 - \rightarrow High- p_T : path-length dependence of HF in-medium energy loss

ALICE Phys. Lett. B753 (2016) 41, Phys. Rev. Lett. 109 (2012) 112301

- HF decay muons in 2.5 < y < 4
- Strong suppression in central collisions
- Non-zero flow in semi-central collisions
- Heavy quarks undergone significant interaction in the QCD medium

NEW ALICE LHC RUN-II data

- Higher statistics, precise measurements
- medium evolution required to describe data

• R_{AA} of D mesons: collisional and radiative energy loss, coalescence and realistic

• HF decay muons: the most precise measurement of b-quark energy loss at high p_{T}

• **PHENIX** First v2($e \leftarrow b$) measurement at RHIC — hint of bottom flow, too

Charmed baryon production

- RHIC: Λ_c / D⁰ ratio is strongly enhanced compared to PYTHIA enhancement increases towards low p_{T}
- LHC: Hint of higher Λ_c / D⁰ ratio in 0-10% Pb–Pb collisions w. r. t. pp collisions
- same way in heavy-ion and pp (w. r. t. e+e-)

• Understanding of pp data is fundamental: not granted that Λ_c is "enhanced" in the

Quarkonia production

Quarkonia (J/ ψ and Y families)

STAR *Phys. Lett.* **B797** (2019) 134917

- Sequential melting (Debye screening) vs. recombination
- Sensitive to medium temperature

- Suppression is insensitive on centrality in central and semi-central collisions
- Recombination plays important roles on J/ψ production on top of the Debye screening at the LHC energies

The "pandora box" at the LHC

ALICE *Nature Physics* **13** (2017) 535

- Smooth evolution of particle production from small to large systems vs charge multiplicity
 - Strangeness enhancement considered defining feature of heavy-ions — now seen in high-multiplicity pp / p-Pb!
- Where all this comes from?
 - Initial stages effects?
 - Better understanding of the observables we use in heavy-ion for small systems?
 - Common mechanism of particle production?
 - ➡ Final state effects?

Fourth order net-proton fluctuations

Charge dependence of direct flow

- Sensitive to the early time EM fields in the collisions

Most vertical fluid ever observed

 Non-central heavy-ion collisions produce a state of matter with strong vortical fluid • Restoration of fundamental symmetries of quantum chromo-dynamics is expected to produce novel physical effects in the presence of strong vorticity [Prog. Part. Nucl. Phys. 88 (2016) 1]

Photon interactions in heavy-ion collisions

- Exceed J/ψ at low- p_T : coherent photo-production
- Sensitive to gluon distribution function at very low Bjorken-*x*

Mass difference of (anti-)nuclei

ALICE Nature Phys. 11 (2015) 811 STAR arXiv:1904.10520 (submitted to Nature Phys.)

- Test of CPT invariance of residual nuclear 5 force by measuring mass difference in the $\frac{3}{2}$ nuclei sector
- Confirms CPT invariance for (light) nuclei

- **New STAR** Measure hypertriton binding energy (best ever) and systematically larger than previous measured
- Opened the hyper-nuclei window

On going and upcoming projects...

RHIC

STAR BES-II, iTPC, eTOF, Forward upgrade

81200 √s = 62.4 GeV

The Phases of QCD

NICA-MPD China contribution: ECal, TOF...

LHC

ALICE and LHCb RUN-III, Seyond RUN-IV upgrade

FAiR-CBM

Capability of particle identification

Performance of di-lepton measurments

FFD

Cryostat

On going and upcoming projects...

STAR

FHCal

FFD

Backup

QCD phase transition

• QCD running coupling constant Quark confinement and asymptotic freedom

Lattice QCD prediction

A phase transition at $T_c \approx 175$ MeV

QCD phase diagram

Prog. Part. Nucl. Phys. **72** (2013) 99

new state of matter: the quark-gluon plasma (QGP)

uSC dSC CFL **Color Superconductors**

Baryon Chemical Potential μ_B

- High temperature at $\mu_{\rm B} \approx 0$
 - Early universe
 - Chiral symmetry restoration
- Finite $\mu_{\rm B}$
 - Rich structure
 - ➡ Neutron star etc.
- Critical point (?)
 - Ist order phase transition or crossover (?)

• Continuous heating / compressing the hadronic matter - a phase transition into a

Heavy-ion program

• Equation-of-state at large $\mu_{\rm B}$, chiral symmetry...

	_	proton	(existing)	
				g)
				2
				HD
_				

Jet production at RHIC and LHC

- Jet: a spray of particles from hard parton fragmentation Get closer access to parton energy
- Aim Hard partons produced before the QCD medium forms
- Interact with the hot and dense medium

- Out-of-cone radiation: energy loss in jet cone Jet yield suppression, dijet or hadron-jet acoplanarity...
- In-cone radiation In-cone radiation: medium modified fragmentation
 - Jet shape broadening, modification of transverse energy profile...

Neutral pion production

Important baseline for heavy-ion collisions

• Neutral pions — unique trigger particles for the gluon jet tagging, baseline for the γ -jet

• Neutral pion spectrum is measured up to $p_T = 40$ GeV/c \rightarrow Thanks to the new shower shape method for high- p_{T} π⁰ identification developed by ALICE-China group

New constraint on QCD predictions, especially on understanding the QCD long-range properties such as PDFs and vacuum FFs

Jet structure

Open heavy-flavours (open charm and beauty particles)

- R_{AA}: Radiative energy loss vs. collisional energy loss
 - Mass and color charge dependence

$$\Delta E_{\rm g} > \Delta E_{\rm q} > \Delta E_{\rm c} > \Delta E_{\rm b}$$

 \Rightarrow R_{AA}(light hadron) < R_{AA}(D) < R_{AA}(B) ?

- Elliptic flow
 - \rightarrow Low- p_T : initial conditions and degree of thermalization of HF in QGP
 - \rightarrow High- p_T : path-length dependence of HF in-medium energy loss
- Medium modification of heavy-flavour hadron formation
 - Hadronization via quark coalescence and / or enhancement of di-quark state

Y suppression

Consistent with sequential melting in QGP

- Y(1S) R_{AA}: similar at RHIC and LHC
- Y(2S+3S) R_{AA}: smaller than Y(1S) in the most 10% central collisions
 - Results at RHIC energies are systematically larger than Y(2S) at the LHC

Combined 2011 di-electron and 2014 + 2016 dimuon datasets

most 10% central collisions atically larger than Y(2S) at the LHC

