

The lifetime of nuclear excited state

7

The lifetime information in ⁴⁵Ti and ⁴⁵Sc

in some states, only the limit of lifetime is known

The lifetime information in ⁴⁵Ti and ⁴⁵Sc

in some states, only the limit of lifetime is known

We planed to get lifetimes with high precision, to futher study the nuclear structure

TL2 beam line at HIRFL

TL2 beam line at HIRFL

The diaphragms and slits

Commissioning run

15 HPGe + 6Clover

Commissioning run

15 HPGe + 6Clover

Beam spot: phi 6.5 mm

16

Lifetime measurement at CIAE

Reaction: ${}^{12}C + {}^{96}ZrO_2$ Beam: ¹²C, 41.8 MeV, 5pnA **Detector: 3AC-LaBr + 6AC-HPGe** + 1AC-Clover **MIDAS** HPGe and independent LaBr Signals

DZTZ

Lifetime measurement at CIAE

Reaction: ${}^{12}C + {}^{96}ZrO_2$ Beam: ¹²C, 41.8 MeV, 5pnA **Detector: 3AC-LaBr + 6AC-HPGe** + 1AC-Clover HPGe and independent LaBr Signals DZTZ

The lifetime of nuclear excited state

Electronic timing -- details

The Generalized Centroid Difference Method

Prompt time spectrum

Assuming no background contributions:

$$\tau = C^{D}(E_{\text{start}}, E_{\text{stop}}) - C^{P}(E_{\text{start}}, E_{\text{stop}})$$

The Generalized Centroid Difference Method

l forbidden transition in ¹⁰⁵Pd

7/2⁺ state arising from $vg_{7/2}$

5/2⁺ state arise from vd_{5/2}

Studying the *l* forbidden transition is helpful in understanding the structure, as well as testing the nuclear models

Lifetime measurement at CIAE

Reaction: ${}^{12}C + {}^{96}ZrO_2$ Beam: ¹²C, 41.8 MeV, 5pnA **Detector: 3AC-LaBr + 6AC-HPGe** + 1AC-Clover **MIDAS** HPGe and independent LaBr Signals

LaBr performance test

LaBr + BGO_AC performance test

LaBr + BGO_AC performance test

In-beam spectra

Time difference spectra

Gated spectra from ¹⁰⁵Pd

PRD curve from ¹⁵²Eu

Formula to extract lifetime

Deduced B(M1) value

$$\tau(M1) = \tau(1 + \alpha_{Tot})(1 + \delta^2)$$

 $\alpha = 0.01896$

 $\delta = 0.055$

Nuclear Data Sheets 105, 775 (2005)

The $B(M1;7/2^+ \rightarrow 5/2^+)$ value in unit of μ_N^2 is calculated by the formula

$$B(M1) \downarrow = \frac{5.687 \times 10^7}{(E_\gamma)^3 \tau_{M1}},$$
(5)

B(M1;7/2⁺ -> 5/2⁺) = 1.49(8) $\times 10^{-2} \mu_N^2$ = 0.83(5) $\times 10^{-2}$ W.u.

M. L Liu, X. H. Zhou, et al.

Institute of Modern Physics, CAS

X. G. Wu, Y. Zheng, et al.

China Institute of Atomic Energy

