

Measurements of the transverse-momentumdependent cross sections of J/ ψ production at mid-rapidity in proton+proton collisions at $\sqrt{s} = 510$ and 500 GeV with the STAR detector

Qian Yang(杨钱) Shandong University

Phys. Rev. D 100, 052009

2019/10/10

Outline

Motivation

STAR experiment

J/ψ measurements in p+p collisions

Summary and outlook

J/ψ in p+p collisions

J/ψ is a non-relativistic QCD system(v²<<1): the simplest system in QCD.

Production of the $c\overline{c}$ (large momentum transfer)

evolution of the $c\overline{c}$ pair intoJ/ ψ (small dynamical scale)

Difficulty:Involving both perturbative and non-perturbative processes

J/ψ: An ideal test ground of QCD!!

Production mechanism

Models differ in the treatment of hadronization:

- Improved color evaporation model
- Color singlet model
- NRQCD approach (CGC+NRQCD at low p_T)

[P. Faccioli, Polarization in LHC physics, Course on Physics at the LHC 2014]

Observables

 J/ψ production mechanism in elementary collisions is not fully understood

No consistent descriptions of cross section and polarization

The Solenoid Tracker At RHIC (STAR)

 $J/\psi \rightarrow e^+e^ J/\psi \rightarrow \mu^+\mu^-$

MTD - trigger on and identify muons

> BEMC-trigger on and identify electrons

Charged particle multiplicity TPC-momentum and energy loss

TOF-1/B and

6

J/ψ signals

Gaussian function +
second-order polynomial function

 Crystal-Ball function + exponential function

J/ψ cross section

$$BR \times \frac{d^2\sigma}{2\pi p_T dp_T dy} = \frac{N_{J/\psi \to e^+ e^-(\mu^+ \mu^-)}^{raw}}{(2\pi p_T) \cdot \int \mathcal{L} dt \cdot \mathcal{A}\varepsilon \cdot \Delta p_T \cdot \Delta y}$$

 $N_{J/\psi}^{raw}$:raw number of reconstructed J/ ψ

 $\mathcal{L}dt$:corresponding integrated luminosity

 $\Delta p_T, \Delta y$:bin widths in pT and y of the J/ ψ

- ε :J/ ψ efficiency, tracking, trigger
- \mathcal{A} :acceptance, J/ ψ decay kinematic acceptance and detector geometric acceptance

J/ψ decay kinematics acceptance

J/ψ cross section

J/ψ cross section: Compare with models

- Precision measurement within large dynamic range
 - J/ ψ production cross-section for p_T from 0 to 20 GeV/c
- The prediction from CGC+NRQCD lies systematically above the data at low pT
- The NLO NRQCD calculation describes the data
- The ICEM calculation can cover the entire pT range
- Calculations only take prompt J/ψ production into account

$J/\psi x_T$ scaling:

- Scaling behavior behavior for J/ψ at high p_T
 - n=5.6±0.1, CO and CEM (n~6), CSM (n~8)
- x_T scaling breaking transition from hard to soft process

$\psi(2S)$ to J/ ψ ratio

•Measured $\psi(2S)/J/\psi$ ratio is consistent with world-wide data •The ICEM model can qualitatively describe measurements

Summary

- Differential cross sections for the J/ ψ meson in proton+proton collisions at $\sqrt{s} = 500$ and 510 GeV at RHIC are measured
 - Two different decay channels: e^+e^- and $\mu^+\mu^-$
 - Wide p_T range: 0 to 20 GeV/c
- The calculations from CGC+NRQCD, NL NRQCD and ICEM give a reasonable description for the data within the polarization envelope
- The J/ ψ x_T scaling is consistent with measurements at other collision energies
- The ratio of ψ(2S) to J/ψ for pT from 4-12 GeV/c is measured, it is consistent with results from other experiments and there is no obvious collision energy dependence

Outlook: J/ ψ production within a Jet

PRL 119, 032001 (2017)

- More detail information of J/ ψ non-perturbative hadronization process
- Stronger discriminative power of different model
- New results from RHIC top energy will coming soon

Thank you for your attention !