

基于ADS超导直线加速器利用活化法测 量p轰击^{nat}Mo靶的反应截面

报告人: 孙慧

陈志强,韩瑞,田国玉,石福栋,张鑫,刘丙岩等

武汉 · 2019年10月

> 实验测量结果及分析

引言: ⁹⁹Tc及其同位素核数据需求

- ▶ 核医学显像技术是肿瘤早期诊断最直接有效的手段;
- ➢ ^{99m}Tc 衰变会发出单一低能 y 射线 (140.5 keV)、辐射损伤小并有良好的显像分辨
 - 率,在全世界核医学放射性同位素中的应用比例达到80%以上;
- ➢ 受核扩散风险和反应堆老化等问题的影响,急需一种安全可靠的^{99m}Tc生产方式。

●实验

✓产生⁹⁹Mo (⁹⁹Mo/⁹⁹mTc)

¹⁰⁰Mo(p,x)⁹⁹Mo

- ✓直接产生^{99m}Tc
 - $^{98}Mo(p,\gamma)^{99m}Tc$, $^{100}Mo(p,x)^{99m}Tc$
- 模型计算
 - ✓理论模型计算
 - TALYS、STAPRE等
 - ✓蒙卡程序模拟

MCNP、FLUKA、GEANT4等

引言: ⁹⁹ Tc生产研究现状

[1]李紫薇,韩运成等. 医用放射性同位素 ⁹⁹Mo/^{99m}Tc 生产现状和展望[J]. 原子核物理评论, 2019, 36(2):170-183.

- ✓ 实验基于兰州近代物理研究所ADS超导直线加速器装置,利用活化法测量了质子束轰击后,样品的伽马谱;
- ✓ 质子束能量8~20MeV;流强100nA左右;
- ✓ ①辐照实验装置; ②靶系统; ③高纯锗探测器; ④靶片。

- ✓ 18 MeV质子束轰击^{nat}Mo靶,利用高纯锗探测器(HPGe)离线测量得到伽玛谱;
- ✓ 探头与样品距离: 11cm;
- ✓ 通过GammaVision计数,并利用如下公式分析计算得到反应截面。

实验结果及分析: ^{93m+g}Tc

- **Here**
- Mo样品:(Φ25 mm×10µm),实验测量^{93g}Tc衰变特征γ1362.947keV,采用 Talys2019模型计算,数据结果与实验数据库进行分析对比。

Fig.1. Cross-sections for the $^{nat}Mo(p, x)^{93m+g}Tc$ reactions compared with previously published data and prediction of the TALYS code.

<mark>实验结果及分析:</mark>^{93m+g}Tc、^{93m}Tc、^{93g}Tc

- 实验通过测量能量为1362.947keV特征γ,得到^{93m+g}Tc,采用Talys2019理论计算,得到 了^{93m}Tc 数据,利用实验数值以及理论数值计算得到了^{93g}Tc;
- 对于(母核)^{93m}TC半衰期为43.5min,(子核)^{93g}TC半衰期为2.75h;

$$\sigma_{cum} = \frac{\lambda_1}{\lambda_1 - \lambda_2} f \sigma_1 + \sigma_2$$

- λ1,λ2分别是母核和子核的衰变参数;
- ✓ **f**是由母核向子核的衰变参数, **f=0.766**;
- ✓ σ1、σ2分别是反应产生母核与子核的截面大小。

[2] Červenák Jaroslav, Lebeda Ondřej, Experimental cross-sections for proton-induced nuclear reactions on ^{nat}Mo[J]. Nuclear Inst. and Methods in Physics Research, B, 2016 :32 – 49.

<mark>实验结果及分析:</mark>^{93m}Tc、^{93g}Tc

 Mo样品:(Φ25 mm×10µm),实验测量^{93g}Tc衰变特征γ1362.947keV,采用 Talys2019理论计算,数据结果与实验数据库进行分析对比。

Fig.2 Cross-sections for the $^{nat}Mo\,(p,\,x)\,^{93m}Tc$ 、 $^{nat}Mo\,(p,\,x)\,^{93g}Tc$ reactions compared with previously published data and prediction of the TALYS code.

实验结果及分析: ⁹⁴^mTc

 Mo样品:(Φ25 mm×10µm),实验测量^{94m}Tc衰变特征γ702.626keV,采用 Talys2019理论计算,数据结果与实验数据库进行分析对比。

Fig.3. Cross-sections for the $^{nat}Mo(p, x)^{94m}Tc$ reactions compared with previously published data and prediction of the TALYS code.

实验结果及分析: ^{95g}Tc

 Mo样品:(Φ25 mm×10µm),实验测量^{95g}TC衰变特征γ765.789keV,采用 Talys2019理论计算,数据结果与实验数据库进行分析对比。

Fig.4. Cross-sections for the $^{nat}Mo(p, x)^{95g}Tc$ reactions compared with previously published data and prediction of the TALYS code.

实验结果及分析:⁹⁵[™]Tc

 Mo样品:(Φ25 mm×10µm),实验测量^{95m}Tc衰变特征γ204.117keV,采用 Talys2019理论计算,数据结果与实验数据库进行分析对比。

Fig.5. Cross-sections for the $^{\rm nat}{\rm Mo\,}(p,\,x)^{95{\rm m}}{\rm Tc}$ reactions compared with previously published data and prediction of the TALYS code.

实验结果及分析: ^{96m+g}Tc

 Mo样品:(Φ25 mm×10µm),实验测量^{96g}TC衰变特征γ788.224keV,采用 Talys2019理论计算,数据结果与实验数据库进行分析对比。

Fig.6. Cross-sections for the ${}^{nat}Mo(p, x){}^{96m+g}Tc_{tot}$ reactions compared with previously published data and prediction of the TALYS code.

<mark>实验结果及分析</mark>:⁹⁹^mTc

 Mo样品:(Φ25 mm×10µm),实验测量^{99m}Tc衰变特征γ140.511keV,天然钼靶 (⁹²Mo 14.84%、⁹⁴Mo 9.25%、⁹⁵Mo 15.92%、⁹⁶Mo 16.68%、⁹⁷Mo 9.55%、⁹⁸Mo 24.13%、¹⁰⁰Mo 9.63%),采用Talys2019理论计算,数据结果与实验数据库进行分 析对比。

Fig.7. Cross-sections for the $^{100}Mo(p, 2n)^{99m}Tc$ reactions compared with previously published data and prediction of the TALYS code.

- Talys2019与实验反应截面相比 整体较低;
- 99mTc反应截面实验数值之间差 别较大,15MeV对应反应截面 150~400mb均有分布,本次实验 为310mb;
- 实验反应截面受到
 - ⁹⁸Mo(p,γ)^{99m}Tc、⁹⁹Mo/^{99m}Tc反应 的影响,本次实验反应截面数值 偏大;
 - ^{90g}Nb衰变产生的特征γ射线能量 为141.178keV;

实验结果及分析:⁹⁹[™]Tc

 采用Talys2019理论计算,得到⁹⁸Mo(p,γ)^{99m}Tc、¹⁰⁰Mo(p,x)⁹⁹Mo 理论数值。天然钼靶 (⁹²Mo 14.84%、⁹⁴Mo 9.25%、⁹⁵Mo 15.92%、⁹⁶Mo 16.68%、⁹⁷Mo 9.55%、⁹⁸Mo 24.13%、¹⁰⁰Mo 9.63%)。

Fig.8 Cross-sections for the ${}^{98}Mo(p, \gamma) {}^{99m}Tc$, ${}^{100}Mo(p, d+pn) {}^{99}Mo$ reactions compared with previously published data and prediction of the TALYS code.

<mark>实验结果及分析</mark>:⁹⁹^mTc

- ine
- Mo样品:(Φ25 mm×10µm),实验测量^{99m}Tc衰变特征γ140.511keV,采用 Talys2019理论计算,得到⁹⁸Mo(p,γ)^{99m}Tc、¹⁰⁰Mo(p,x)⁹⁹Mo理论数值。

$$\sigma_{eff (99mTc)} = \sigma_{(99mTc)} + \frac{P_{(99Mo)} \lambda_{(99Mo)}}{\lambda_{(99Mo)} - \lambda_{(99mTc)}} \sigma_{(99Mo)}$$

 $\label{eq:second} \begin{array}{l} [3] Qaim S.M \,,\, Sud{\acute{a}}r\,S \,,\, Scholten\,B \,,\, Koning\,A.J \,,\, Coenen\,H.H \,, \\ \ Evaluation \,\, of \,\, excitation \,\, functions \,\, of \,\, $^{100}Mo(p,d+pn)^{99}Mo \,\, and \,\, 1^{00}Mo\,(p,2n)^{99m}Tc \,\, reaction...[J]. \\ \ Applied \,\, Radiation \,\, and \,\, Isotopes, \, 2014 : 101 - 113 \,. \end{array}$

• 修正后的¹⁰⁰Mo(p, 2n)^{99m}Tc反应截面

Fig.9. Cross-sections for the $^{100}Mo(p, 2n)^{99m}Tc$ reactions compared with previously published data and prediction of the TALYS code.

- 基于兰州近代物理研究所ADS超导直线加速器研究了8-20MeV质子轰击天然钼
 - 靶产生^{93m+g}Tc、^{93m}Tc、^{93g}Tc、^{94m}Tc、^{95g}Tc、^{95m}Tc、^{96m+g}Tc、^{99m}Tc的反应截面数
 - 据。并利用Talys2019进行理论计算,与实验数据进行了分析对比。
 - ✓ 实验截面数据较好的符合了现有实验数据以及理论数据,为医用同位素的生产起
 到了一定的参考作用;
 - ✓ 某些核素截面数据存在一些差异,需要进一步的优化计算。
 - ✓ 由于测量累计时间的问题,本次实验没有监测到⁹⁹Mo的特征γ射线,希望开展后期实验继续 完善。
- 基于这些研究基础,希望下一步能扩展到更宽的能量区间,考虑多种条件下
 - 反应截面,更好的满足锝医用同位素生产需求。

