

Structural change and lineshape investigation in ¹⁰¹Pd isotope

Nuclear Structure Group

8-12 October 2019

Objective
 Experimental Details
 Data Analysis
 Results
 Conclusions/Summary

第十七届全国核物理大会暨第十三届会员代表大会

Objective:

- □ Lifetime measurement based on DSAM
- Studying antimagnetic character
- Shears Mechanism
- Deformation study for Pd-isotopes
- Investigating structural change

Discussed with results

Experimental Details: $^{92}Zr (^{12}C, 3n\gamma)^{101}Pd$

- 1. Reaction:
- 2. Target:
- 3. Backing:
- 4. Beam Energy:
- 5. Cross-section:
- 6. Detectors:
- 7. Acquisition System: XIA Digitizer (DZTZ)

 $9^{2}Zr$ (1.1 mg/cm²)

<u>Data Analysis:</u>

- 1. Three Asymmetric matrices:
 - Small angle (42°) vs all
 - Large (140° or 150°) vs all
 - 90° vs all
- 2. Matrices were gated with 555 keV transition at three angles.
- 3. Three angle dependent spectra were made for using as input for LINSHAPE code
- 4. Input info. required for DECHIST (info. about detector geometry, details about Target and backing i.e. Z, A and density, beam energy etc.) and HISTAVER (time step= 0.01 ps and history = 5000).

第十七届全国核物理大会暨第十三届会员代表大会

Results: DSAM calculated lineshapes

第十七届全国核物理大会暨第十三届会员代表大会

Results: DSAM calculated lifetimes

Table 1 The results of the present experiment for different γ - ray transitions in the $vh_{11/2}$ band of ${}^{101}Pd$.

Energy (keV)	$Spin(\hbar)$ $I_i ightarrow I_f$	Lifetime τ (ps)	$B(E2) \\ (e^2b^2)$	$\begin{array}{c} Q_t \\ (eb) \end{array}$	B(E2) (e^2b^2) [8]	B(E2) (e^2b^2) [13]
748	$19/2^- \rightarrow 15/2^-$	2.34 (12)	0.148 (9)	3.386 (90)	~ 0.17	0.29 (11)
891	$23/2 \rightarrow 19/2$	1.37 (10)	0.106 (9)	2.355 (85)	~ 0.10	0.19 (3)
911	$27/2^- \rightarrow 23/2^-$	1.26 (8)	0.103 (9)	2.101(71)	0.112(11)	0.17(2)
971	$31/2^- \rightarrow 27/2^-$	~ 0.64	~ 0.144	~ 2.355	0.165 (15)	0.105 (12)
1074	$35/2^- \rightarrow 31/2^-$				0.124(11)	0.082 (9)
1127.5	$39/2^- \rightarrow 35/2^-$				0.093 (9)	0.087(10)
1421.8	$43/2^- \rightarrow 35/2^-$				~ 0.031	0.09 (2)

 α values used in the calculation of B(E2) values are taken from the http://bricc.anu.edu.au/

$$B(E2) = \frac{0.08156}{\tau E_{\gamma}^5 (1 + \alpha_{\tau})} \mid e^2 b^2 \mid$$

and,

$$Q_t^2 = \left(\frac{16\pi}{5}\right) \frac{B(E2; I \to I-2)}{\langle I2K0 \mid I-2K \rangle^2}$$

8. V. Singh et al. Phys. Rev. C 95, 064312 (2017).

13. M. Sugwara et al. Phys. Rev. C **92**, 024309 (2015).

$$\langle I2K0 | I - 2K \rangle = \sqrt{\frac{3(I - K)(I - K - 1)(I + K)(I + K - 1)}{(2I - 2)(2I - 1)I(2I + 1)}} (3)$$

In the present calculations, K = 11/2 has been used for the $vh_{11/2}$ band.

Here τ , the level lifetime (in pico-seconds), E_{γ} , the gamma energy (in *MeV*), α , the conversion coefficient, and $\langle I2K0 | I - 2K \rangle$, the Clebsch-Gordon coefficient, given by

第十七届全国核物理大会暨第十三届会员代表大会

Fig. 5 The reduced transitional probabilities plotted for ${}^{100}Pd$ [27], ${}^{101}Pd$ (present work) and ${}^{102}Pd$ [28] with increasing spin.

27. D. Radeck et. al. Phys. Rev. C 80, 044331 (2009).
28. A. D. Ayangeakaa et al. Phys. Rev. Lett. 110, 102501 (2013).

第十七届全国核物理大会暨第十三届会员代表大会

第十七届全国核物理大会暨第十三届会员代表大会

Summary:

- DSAM based lifetime measurements are performed.
 ⁹²Zr (¹²C, 3nγ)¹⁰¹Pd reaction is used.
- 3. Lineshapes are calculated to study AMR character based on measured B(E2) values.
- 4. Shape change from spherical to triaxial rotor is observed (with small triaxiality observed).
- 5. IBM and TPSM based calculations are needed to give more theoretical verification for AMR character.

Thanks for your attention!

Nuclear Structure Group @ IMP-CAS

- Prof. Zhou Xiaohong, Prof. Minliang Liu,
- Dr. Fang Yongde, Dr. Guo Song, Dr. Guangshun Li, Dr. Jianguo Wang, Dr. Yunhua Qiang,
- Dr. Kumar M. Raju (post-doc), Mrs. KuanKuan (Pursuing Doctorate)