

2019 全国核物理大会 湖北-武汉

天体能区恒星碳燃烧核反应数据 的间接测量

李威波

北京市辐射中心(BRC) 北京师范大学核科学与技术学院 2019-10-11

◈常用间接测量方法:

Rep. Prog. Phys. 77 (2014) 106901 (49pp) --Rev_ANC_THM_CD

Coulomb dissociation G. Baur et al.,

NPA 458 (1986) 188

- study inverse of radiative capture reaction $b(x, \gamma)a \Leftrightarrow a(\gamma, x)b$
- use Coulomb field of target nucleus A as source of photons $a(\gamma, x)b \Leftrightarrow A(a, bx)A$

↓ absolute S factors as a function of energy **ANC method** H. M. Xu et al., PRL 73 (1994) 2027

- extract asymptotic normalization coefficient of ground state wave function of nucleus a from transfer reactions
- calculate matrix elements for radiative capture reaction $b(x, \gamma)a$

Trojan-Horse method G. Baur, PLB 178 (1986) 35

• study three-body reaction $A + a \rightarrow C + c + b$ with Trojan horse a = b + x

and spectator \boldsymbol{b}

• extract cross section of two-body reaction $A + x \rightarrow C + c$

↓ energy dependence of S factor

 \Downarrow S factor at zero energy

- similar reaction mechanisms: transfer of virtual particle
- final state with three particles (bound/continuum states)
- theoretical descripton with direct reaction theory

特洛伊木马方法原理

- ◆ THM 原理
 - ⊗ A+x→c+C

 - - ◇ x:参与者,b:旁观者
 - ◇ 准自由反应
 - - ◇ 截面不受库仑位垒抑制!!!
 - ◇ 电子屏蔽效应可以忽略!!!
 - - ◇ 束缚能(结合能)
 - ◇ 能量分配: E_{Bb}
 - ◇ 费米运动

$$E_{Aa} = E_{Ax} + E_{Bb} + \varepsilon_a$$

特洛伊木马方法理论文献

- PWIA: Baur G, Phys. Lett. B178 (1986) 135
- DWBA: Typel S and Baur G, Ann. Phys. 305 (2003) 228
- INEB: C.A. Bertulani, M.S. Hussein, S. Typel, Phys. Lett. B 776 (2018) 217

$$\frac{d^3\sigma}{dE_{Cc}d\Omega_{Cc}d\Omega_{Bb}} = KF \left| W(\vec{Q}_{Bb}) \right|^2 \frac{d\sigma^{TH}}{d\Omega}$$

特洛伊木马方法结果

◈ THM 理论基本关系式

◎ 能量关系(准自由条件决定) (s: l=0, Q_{Bb}=0)

→选取入射能量!

$$E_{Ax}^{qf} = E_{Aa} \left(1 - \frac{\mu_{Aa}}{\mu_{Bb}} \cdot \frac{\mu_{bx}^2}{m_x^2} \right) - \mathcal{E}_a$$

$$E_{Ax} = E_{Ax}^{qf} \pm E_{xb} = E_{Cc} - Q_2$$

◈ 截面关系(一系列近似处理) → 提取截面数据!

$$\frac{d^{3}\sigma}{dE_{Cc}d\Omega_{Cc}d\Omega_{Bb}} = KF \left| W\left(\vec{Q}_{Bb}\right) \right|^{2} \frac{d\sigma_{l}}{d\Omega} \left(Ax \to Cc \right) P_{l}\left(R, \eta_{Ax}, k_{Ax}, Q_{Aa} \right)$$

特洛伊木马方法特点

◈优点 借助于较高能区的准自由三体反应测量, ※没有库仑位全抑制,典型的三体反应截面~mb ◆电子屏蔽效应可忽略 ◈ 不需要外推,可以到极低能区 ◎ 能够在相对较短的时间内测定激发函数 ◎能够进行一些特殊的反应体系(不稳定核素, 中子)测量。 ◈不需昂贵、复杂的实验设备

特洛伊木马方法特点

◈ 局限性

◇ 需要借助于核反应理论分析
◇ 选取适当的木马核(其动量分布已知)
◇ 对 准自由机制的存在与否进行检测
◇ 需要高精度的角度和能量分辨率的测量
◇ 不能测定绝对截面数值,只能得出能量依赖关系,需要直接测量数据用于归一化

⊗ 与直接测量数据在适当能区归一

◈ 电子屏蔽效应研究!?

THM检验:准自由角度对关联

准自由角度对关联效应

 $^{2}H(^{6}Li,^{3}He^{4}He)n \rightarrow ^{6}Li(p,^{3}He)^{4}He$

THM检验:旁观者动量谱分布

实验获得的 中子动量谱(点)与理论(线) 的比较

²H(¹¹B, α^{8} Be)n \rightarrow ¹¹B(p, α)⁸Be

THM实验点 与 直接数据(曲线) 的比较

常用木马核基本情况

	木马核	成团结构	束缚能 (MeV)	相对运动角 动量
1	² H	p + n	2.225	0
2	³ He	d + p	5.493	0
3	⁶ Li	a + d	1.474	0
4	⁷ Li	a + t	2.467	1 ?
5	⁷ Be	³ He + a	1.586	1 ?
6	⁹ Be	⁵ He + a	2.464	0
6	⁹ Be	⁸ Be + n	1.665	1?
7	¹² C	⁸ Be + a	7.367	0
8	¹⁶ O	¹² C + a	7.162	0
9	²⁰ Ne	¹⁶ O + a	4.730	0

THM已有的实验研究

INFN-LNS (199x-2013)

Reaction	THM reaction	E_{beam} (MeV)	Q_3 (MeV)	THM nucle	us (x-cluster)	Reference
⁷ Li(p,α) ⁴ He	$^{2}\mathrm{H}(^{7}\mathrm{Li},\alpha\alpha)n$	19-22, 28-48	15.122	² H (p)		Zadro et al (1989)
	Re	p. Prog.	Phys. 77	(2014)	106901	Spitaleri <i>et al</i> (1999) Lattuada <i>et al</i> (2001) Aliotta <i>et al</i> (2000)
⁷ Li(p,α) ⁴ He	⁷ Li(³ He,αα) ² H	33	11.853	³ He (p)		Tumino et al (2006)
⁶ Li(p,α) ³ He	² H(⁶ Li,α ³ He)n	14.25,	1.795	² H (p)		Tumino et al (2003)
		21.6-33.6				Tumino et al (2004)
		25			PRI	Calvi et al (1990)
61 : (1	61 :/3110 ((()))111	17.5	16 970	3110 (2)		Lamia et al (2013)
$^{\circ}Li(d,\alpha)^{\circ}He$	$^{\circ}Li(^{\circ}He,\alpha\alpha)^{\circ}H$	17.5	10.879	^o He (p)		Pizzone et al (2011) Chembini et al (1006)
$-Li(d,\alpha)$ ·He	$-Li(-Li,\alpha\alpha)$ He	5	22.572	-Li (d)	ΔΡΙ	Spitaleri <i>et al</i> (2001)
9 Be(n α) ⁶ L i	$^{2}\mathrm{H}(^{9}\mathrm{Be}\alpha^{6}\mathrm{Li})\mathrm{n}$	22.35	-0.099	$^{2}H(n)$		Romano <i>et al</i> (2005)
De(p,u) Li	II(De,u Li)ii	22.00	0.077	пф		Wen et al (2008)
${}^{10}B(p,\alpha)^7Be$	$^{2}H(^{10}B.\alpha^{7}Be)n$	27	-1.079	${}^{2}H(p)$	PIR	Lamia et al (2009, 2010)
${}^{11}B(p,\alpha)^8Be$	${}^{2}H({}^{11}B,^{8}Be)n$	27	6.366	$^{2}H(p)$		Spitaleri et al (2004)
				47		Lamia et al (2012a)
¹⁵ N(p,α) ¹² C	² H(¹⁵ N,α ¹² C)n	60	2.741	² H (p)	PRC	La Cognata et al (2006, 2007, 2009)
¹⁸ O(p,α) ¹⁵ N	² H(¹⁸ O,α ¹⁵ N)n	54	1.755	² H (p)		La Cognata <i>et al</i> (2008a, 2008b,
						2010a, 2010b)
1957 160	211/1912 16:01	50	5 000	2** ()	NPA	Palmerini et al (2013)
$^{17}F(p,\alpha)^{18}O$	$^{2}H(^{17}F,\alpha^{10}O)n$	50	5.889	² H (p) ² H (n)		La Cognata <i>et al</i> (2011)
··O(p,α)··N	$H(0,\alpha,N)h$	45	-1.055	-н(р)		Pelmerini et al (2013)
³ He(d p) ⁴ He	61 ;(3He pg)4He	56	16 879	61 i (d)	JPG	I = Cognete et al (2015)
$^{2}H(d n)^{3}H$	$^{2}H(^{6}I i n^{3}H)^{4}He$	14	2,559	⁶ Li (d)		Ripollo <i>et al</i> (2005)
11(u,p) 11	11(20,9 11) 110		2.000	21 (u)		Pizzone <i>et al</i> (2013)
$^{2}\mathrm{H}(\mathrm{d},\mathrm{p})^{3}\mathrm{H}$	² H(³ He,p ³ H) ¹ H	18	-1.461	³ He (d)	EPJ	Tumino et al (2011)
² H(d,n) ³ He	² H(³ He,n ³ He) ¹ H	18	-2.225	³ He (d)		Tumino et al (2011)
$^{12}C(\alpha,\alpha)^{12}C$	⁶ Li(¹² C,α ¹² C) ² H	16, 20	-1.474	⁶ Li (α)		Spitaleri et al (2000)
⁶ Li(n, α) ³ H	² H(⁶ Li,α ³ H) ¹ H	14	2.559	² H (n)		Tumino et al (2005)
17 14	2 17 14 1			2		Gulino et al (2010)
$^{17}O(n,\alpha)^{14}C$	$^{2}H(^{17}O,\alpha^{14}C)^{1}H$	41, 43.5	-0.407	$^{2}H(n)$		Gulino et al (2013)
'H(p,p)'H	⁴ H(p,pp)n	5.6	2.224	² H (p)		Tumino et al (2007, 2008)
$^{12}C(^{12}C,\alpha)^{20}Ne$	¹² C(¹⁶ O,α ²⁰ Ne) ⁴ He	25	-2.545	¹⁰ O(¹² C)		—
$^{13}F(\alpha,p)^{22}Ne$	¹³ C(6L1,p**Ne)*H	0	0.199	$^{\circ}L1(\alpha)$		
$-C(\alpha,n)$		1.82	0.742	$^{\circ}L1(\alpha)$		La Cognata <i>et al</i> (2012, 2013)

THM已有的实验研究

- Rep. Prog. Phys. 77 (2014)
- Natrue 2018
- ♦ PRL 2017
- ✤ PLB 2015x3
- APJ 2019, 2018, 2017x4, 2015x2, 2014x2
- PRC 2019, 2018, 2017x3, 2016, 2015x6, 2014
- ✤ JPG 2016,
- FBS 2018,2014
- EPJA 2018,2016x3

Direct reaction	TH reaction	ref	
⁷ Li(p, α) ⁴ He	⁷ Li(d, $\alpha \alpha$)n ⁷ Li(³ H ₂ $\alpha \alpha$) ² H	[17–19]	
6 Li(p, α) ⁴ He	$61 i (61 i \alpha \alpha)^4 He$	[20]	
6 Li(\mathbf{n},α) ³ He	6 Li($d \alpha ^{3}$ He)n	[21]	
$^{11}B(p,\alpha)^8Be$	$^{11}B(d^{-8}Be \alpha)n$	[22-24]	
$^{10}B(p,\alpha)^{7}Be$	$^{10}B(d^{7}Be \alpha)n$	[25, 20]	
${}^{9}\text{Be}(\mathbf{n} \alpha)^{6}\text{Li}$	${}^{9}\text{Be}(d {}^{6}\text{Li} \alpha)n$	[27-27]	
$^{2}H(^{3}He n)^{4}He$	⁶ L i(³ He n α) ⁴ He	[32]	
${}^{2}H(d p){}^{3}H$	${}^{2}H({}^{6}Litp){}^{4}He$	[32_35]	
$^{15}N(p \alpha)^{12}C$	$^{15}N(p \alpha^{12}C)n$	[36]	
${}^{18}O(p \alpha)^{15}N$	$^{18}O(p,\alpha^{15}N)n$	[37 38]	
${}^{1}H(p,p){}^{1}H$	2 H(n nn)n	[11, 12]	
${}^{2}H(d p){}^{3}H$	${}^{2}H({}^{3}Het n)^{1}H$	[30_41]	
$^{2}H(d n)^{3}He$	$^{2}H(^{3}He^{3}He^{3}he^{3}$	[30_41]	
$^{19}E(p,\alpha)^{16}O$	${}^{2}\text{H}({}^{19}\text{E}^{16}\text{O})\text{n}$	[32-41]	
$^{17}O(p,\alpha)^{14}N$	$^{2}H(^{17}O\alpha^{14}N)n$	[42, 45]	
$^{4}\text{He}(^{12}\text{C} ^{12}\text{C})^{4}\text{He}$	6 $i(^{12}C \alpha^{12}C)^{2}H$	[44]	
$n(^{6}\text{Lit})^{4}\text{He}$	$^{2}H(^{6}Iit^{4}He)^{1}H$	[10 46]	
$^{13}C(\alpha n)^{16}O$	6 Li(13C n^{16} O) ² H	[10, 40]	
$^{18}E(p, \alpha)^{15}O$	$^{2}\text{U}(^{18}\text{E})^{15}\text{O})$	[10]	
$^{19}E(\alpha, p)^{22}Ne$	$61 i ({}^{19}\text{Em}{}^{22}\text{Ne})^{2}\text{H}$	[47]	
$7\mathbf{P}_{2}(\mathbf{r},\mathbf{r})^{4}\mathbf{H}_{2}$	$\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}$	[40]	
$^{12}C(^{12}C \approx)^{20}N_{c}$	$12C(14N c^{20}Nc)^{21}$	[49]	
$12C(12C n)^{23}N_{0}$	$12C(14N n^{23}Nn)^{211}$	[50]	
C(C,p) Na	C(IN,p INa) H	[50]	

国内研究进展概况

 ◇ 原子能院核物理所-所长基金
 ◇ (2004)从意大利回国后,国内起步!
 ◇ 国家自然科学基金(课题组申请15年)
 ◇ 2006-2008
 ⁹Be(p,α)⁶Li ← THM d=p⊕n ²H(⁹Be,α⁶Li)n
 ◇ 2011-2013

 ${}^{9}Be(p,d){}^{8}Be \leftarrow {}^{THM}_{d=p\oplus n} {}^{2}H({}^{9}Be,dn){}^{8}Be$

◆北京市自然科学基金(11万元) ◆ 2012-2014 d(d, p)t ← THM 2H(⁶Li, pt)⁴He

国内研究进展概况

◈ 建立THM应用平台 ◈硬件 ◇ 靶室, 探测器, 电子学, 获 取系统 ◈软件 ♦ ROOT-THM 数据分析平台 ♦ Geant4-THM 模拟系统 ◈新思路 ◇ 准自由机制挑选条件 \diamond ⁹Be=(⁸Be+n)=(⁵He+a)

- PRC-2008
- JPG-2011
- NPR-2014
- CPC-2015
- PRC-2015
- PRC-2016
- PRC-2017

PHYSICAL REVIEW C 78, 035805 (2008)

$$^{9}Be(p,\alpha)^{6}Li \leftarrow \frac{THM}{d=p\oplus n}^{2}H(^{9}Be,\alpha^{6}Li)n$$

 ※ 提高了能量分辨率, 数据符合得更好
 ※ 阈下共振(-27keV)影 响不明显。
 ※ 得到裸核: S(0)=21.0±0.8 MeV*b
 ※ 提取出点子屏蔽势: U_e=676±86 eV

* JPG2011

IOP PUBLISHING

Q-G Wen et al

J. Phys. G: Nucl. Part. Phys. 38 (2011) 085103 (8pp) doi:10.

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS doi:10.1088/0954-3899/38/8/085103

A new approach to select the quasifree mechanism in the Trojan horse method

Qun-Gang Wen¹, Cheng-Bo Li^{2,3}, Shu-Hua Zhou³, Qiu-Ying Meng³, Claudio Spitaleri^{4,5}, Aurora Tumino^{4,6} and Rosario Gianluca Pizzone⁴

J. Phys. G: Nucl. Part. Phys. 38 (2011) 085103

Figure 1. An intermediate process $A + a \rightarrow A + x + b$. \vec{v}_c is the velocity of the center-of-mass coordinate.

Figure 2. Constrained intermediate breakup process.

♦ PRC-2016

PHYSICAL REVIEW C 93, 035803 (2016)

Experimental study to explore the ⁸Be-induced nuclear reaction via the Trojan horse method

Qun-Gang Wen,^{1,*} Cheng-Bo Li,^{2,†} Shu-Hua Zhou,³ Bakhadir Irgaziev,⁴ Yuan-Yong Fu,³ Claudio Spitaleri,^{5,6} Marco La Cognata,⁵ Jing Zhou,³ Qiu-Ying Meng,³ Livio Lamia,^{5,6} and Marcello Lattuada^{5,6}

FIG. 5. Different Trojan horse nuclei leading to the same final state represented by pseudo-Feynman diagrams. (a) ${}^{9}\text{Be} = ({}^{8}\text{Be} + n)$, and (b) ${}^{2}\text{H} = (p + n)$.

FIG. 6. Comparison between the experimental neutron momentum distribution (different colored solid symbols) and theoretical one (grey line). The different colored solid symbols come from cutting different ranges of the ${}^{6}\text{Li} - \alpha$ relative energy.

♦ CPC-2015

Chinese Physics C Vol. 39, No. 5 (2015) 054001

Experimental spectra analysis in THM with the help of simulation based on the Geant4 framework^{*}

LI Cheng-Bo(李成波)^{1,5;1)} WEN Qun-Gang(文群刚)^{2;2)} ZHOU Shu-Hua(周书华)³ JIANG Zong-Jun(蒋宗均)⁴ FU Yuan-Yong(傅元勇)³ ZHOU Jing(周静)³ MENG Qiu-Ying(孟秋英)³ WANG Xiao-Lian(汪晓莲)⁴

Fig. 4. (color online) Comparison of experimental spectrum E_1 - E_u (left) with simulated one (right).

Phys. Rev. C 92, 025805 (2015) Phys. Rev. C 95, 035804 (2017)

TABLE I. Comparison of ${}^{2}H(d, p){}^{3}H$ indirect study via THM.					
Work	TH	<i>E</i> ₀ (MeV)	E_{Ax}^{qf} (MeV)	$S_0(E)$ (keV b)	U _e (eV)
Present	${}^{6}\mathrm{Li} = (d + \alpha)$	9.5	0.089	56.7 ± 2.0	13.2 ± 4.3
Ref. [8]	${}^{6}\mathrm{Li} = (d + \alpha)$	14	0.866	75 ± 21	
Ref. [9]	$^{3}\text{He} = (d + p)$	17	0.178	57.7 ± 1.8	13.4 ± 0.6

获得0~400keV能区S(E) & Ue

- 1, vs PRC-2013: 数据点 更多, 精度 更高, 深入到更低能区!
- 2, vs APJ-2014: "木马无关性"强有力的检验!

3,能量选取的依赖性。

PRC2015 被核心数据库引用14次
实验数据被国际著名数据库 ADND 《Atomic Data and Nuclear Data Tables》引用收录(2018年120卷 121-151)

碳碳融合反应间接测量

LETTER

https://doi.org/10.1038/s41586-018-0149-4

An increase in the ${}^{12}C + {}^{12}C$ fusion rate from resonances at astrophysical energies

A. Tumino^{1,2}*, C. Spitaleri^{2,3}, M. La Cognata², S. Cherubini^{2,3}, G. L. Guardo^{2,4}, M. Gulino^{1,2}, S. Hayakawa^{2,5}, I. Indelicato², L. Lamia^{2,3}, H. Petrascu⁴, R. G. Pizzone², S. M. R. Puglia², G. G. Rapisarda², S. Romano^{2,3}, M. L. Sergi², R. Spartá² & L. Trache⁴

◆我们申请国家自然科学基金 THM-CC: ◆ 2004—2017, 2018, 2019, ...

Low-mass stars

Red giant

Arcturus

Planetary

nebula

Dumbbel

Nebula

Mid-sized star

The Sun

Red dwarf

Proxima

Black dwarf

Blue dwarf

White

dwarf

→中等以上质量(>8 M_☉)恒星能否发生碳爆型超新星爆发?→吸积中子星演化趋势?

3,基本反应道: ¹²C(¹²C,α)²⁰Ne ¹²C(¹²C,p)²³Na ¹²C(¹²C,p)²³Mg ¹²C(¹²C,n)²³Mg ¹²C(¹²C,g)²⁴Mg ¹²C(¹²C,2α)¹⁶O

+ 4.617 MeV + 2.241 MeV - 2.599 MeV +13.933 MeV -0.113 MeV

- 最主要

High-mass stars

lassive sta

Spica

Star-forming

Black hole

nebula

Neutron star

LGM-1 pulsar

C-burning: Fr & R.K

直接测量¹²C+¹²C反应截面的工作

¹²C+¹²C: Nature 2018

¹²C+¹²C: Nature 2018

Nature2018-THM-CC 争论

arx2018, (PRC2019)

♦ A.M.M.

۲

a

A

a

A

x

Nature results are not correct

- ◈ 方法适用性:
 - \diamond PWA(A.M.M.): > E_C
 - \diamond DWBA(A.M.M.-PRC2011): E_C

S

b

B

- ◈ 归一利用直接数据问题
- ◈ R-矩阵拟合-共振能级J^T
- ◈ 准自由旁观者粒子:后角度!
- ◈ 低能外推趋势?

S

F

S

F

F

- LNS
- Comment are totally groundless
 - ◈ 关于方法
 - ◊ PWIA(G.Baur-PLB1986)
 - PWIA vs DWBA-MPWA
 - (S.Typel, G.Baur- AoP2003)一致 性
 - ◇ INEB (C.A.B. M.S.H. S.Typel-PLB2018) 近似条件下一致性
 - ◇ 经过无数次实验检验
 - $\diamond \quad \mathbf{E}_{Aa}, \ \mathbf{E}_{Bb} \sim \mathbf{E}_{C3}$
 - $\diamond \quad \mathsf{E}_{\mathsf{A}\mathsf{x}'} \, \mathsf{E}_{\mathsf{C}\mathsf{c}} \, \thicksim \, \mathsf{E}_{\mathsf{C}2}$
 - ◊ EO→λ<R
 - ◈ 冲击近似

 - ◇ d动量分布检验
 - ◇ 旁观者d: 小角度前冲, 非后角
 - ◇ 不同方法vs直接数据: 高能区走向!?
 - ◈ 峰位漂移不存在
 - 》 直接数据选取,权重,分支比
 - ◎ 原始数据J^m有误差、错误

不同方法 VS 直接数据

FIG. 1. Comparison between experimental and theoretical S(E)*-factor for the ²⁰Ne+α₁ channel. The solid black line plus shading represent the THM S(E)* factor and related uncertainty published in [2], coloured symbols are direct data (red filled circles [23], purple filled squares [19], blue filled diamonds [20], blue filled stars [21] and green filled triangles [22]) and the solid blue line represents the theoretical calculation by A.M.M. [3].

FIG. 2. Comparison between experimental and theoretical S(E)*-factor for the ²³Na+p₁ channel. The solid black line plus shading represent the THM S(E)* factor and related uncertainty published in [2], coloured symbols are direct data (red filled circles [23], purple filled squares [19], blue filled diamonds [20], blue filled stars [21] and green filled triangles [22]) and the solid blue line represents the theoretical calculation by A.M.M. [3].

我们的看法

♦ A.M.M.

◈ 需要先做有效性、可靠性证明。

- ◎低能存在许多共振,独家数据,需要重复检验可靠性?
 (直接,间接)
- ◆数据归一能区数据太少,误差大!需补齐高能区符合
 检验数据

我们的考虑

◈木马核的选择: N14,O16,不变性检验。

◈ 能量点选择: 31MeV, 27.5MeV 高能区重叠归一, 低能区重复检验。

◈ 探测粒子: a(p)+d, a(p)+a; a(p)+C*

◇ 轻粒子能量穿透强,能损能散小;但小角度。dE-Er.◇ 剩余核,角度范围较大;但穿透能损能损大。No dE!

◈ 探测器布局:兼顾。

- ◈ 排除干扰
- ◈ 减小误差

方法路线

——用特洛伊木马方法间接研究碳燃烧聚变核反应:¹²C+¹²C

两个备选木马核的比较(能量单位: MeV)

木马核	束缚能 e _a	A+a库仑位垒 E _{Aa} c	A+a入射道 相对能量 E _{Aa}	对应A+x准自由 能 E _{Ax} qf	对应实验束流 能量 E _o
¹⁶ O=(¹² C+α)	7.16	9.91	9.91 10.7 11.6	1.6 2.2 3.0	23.5 25 27.1
¹⁴ N=(¹² C+d)	10.27	8.87	11.1 12.7 14.3	0 1.5 3.0	24.0 27.5 31.0

14N vs 160 a0, c.m. 3MeV

E2:E1 {th1>0 && th2<0}

E2:th2 {th1>0 && th2<0}

-th2:th1 {th1>0 && th2<0}

E3:th3 {th1>0 && th2<0}

E_Ax:ps_cm {th1>0 && th2<0}

验装置示意图

小结

- ◇ 已有实验证实:方法有效性、可行性!
- ◇特洛伊木马方法的应用前景:
 - ◈ 天体核反应
 - ◈低能聚变核反应
 - ◎ 虚拟中子源
 - ◈ 不稳定核反应
 - ۰...

Todo ... ◈ 天体核反应 ◈ 恒星碳燃烧核反应: ¹²C+¹²C ◈ 虛拟中子源核反应 \Rightarrow TH: d=(p+n) ◆ Virtual neutron -能量连续可调! ◆ ◈ 用于研究中子相关的核反应 ◈ 不稳定核引发的核反应 \bullet TH: ⁷Li=(a+t) \ast TH: ⁹Be=(a+⁵He) \otimes

想做,能做,但一直申请不到项目资助! 希望得到各位专家的大力支持!!!

◈ 课题组成员(TM-A.B.C)

- ◈ 李成波(北京市辐射中心[北师大核学院])
- ◈ 文群刚(安徽大学)
- ◎ 周书华,李志宏,郭冰,傅元勇,周静等(中国原子能科学研究院)◎ 合作者
 - ◈ 李霞-NTOF组: DAQ数据获取系统,数据转换程序
 - ◈ 林承建一核反应组:实验靶室,实验器材,准备间;讨论
 - ◈ 串列加速器运行人员: 束流
 - ◈ 制靶组:实验靶
- ◈ 特别感谢,国际合作:
 - - ♦ Prof. C. Spitelari
 - ◊ Dr. R.G. Pizzone, Dr. A. Tumino,
- ◈ 资助:
 - ◈ 国家自然科学基金(11075218, 10575132)
 - ◈ 北京市自然科学基金(1122017)

