
A Quick Guide to the new

CEPC Software Framework

Zou Jiaheng

2019-04-01



Content

2

 General introduction

 Key concepts

 Examples

 Plan for CEPC



Offline Software System for HEP

3

Software Framework

ROOT

Geant4

etc.

S
im

u
la

ti
o
n

C
a
lib

ra
ti
o
n

R
e
c
o

n
s
tr

u
c
ti
o
n

A
n
a
ly

s
is

G
e
n
e
ra

to
r

Other

Tools & Svcs

EDM

Data I/O

Database

Geometry

 Application layer

 Basis layer

 Common services

 Software framework

 External libraries and 

tools

The appearance of a system is mainly determined by the framework

 Software architecture, organization, strategy

 Software development standards, user interfaces

 Framework: programming problems

 Physicists: concentrate on calculation algorithms



Considerations on CEPC

 Marlin: the framework at present

 The developing is not very active now

 Is not very modernized: hard to support parallel computing…

 Gaudi

 Very powerful, but very complex and heavy

 A new framework developed by ourselves?

 Integration with new technologies, such as parallel computing

 Long Term and Rapid Supporting

 Feasibility: we have the experience of SNiPER

4



The SNiPER Framework

5

 Originally Developed for JUNO

 Fulfill the requirements for neutrino experiments

 Comprehensive and generality is considered at the beginning

 A general purpose framework, not only for neutrino experiments

 Functions as a Framework

 Modularized, extensible, customizable, and friendly to use

 High performance

 Current Status

 Has been used in JUNO, LHAASO, CSNS, nEXO

 Is still being in developing for more application scenarios

 https://github.com/SNiPER-Framework/sniper

https://github.com/SNiPER-Framework/sniper


Technical Overview of SNiPER

 Hybrid of C++ and Python

 C++ is used in key functions for better performance

 Python is flexible: configuration, simple algorithms and services…

 Binding with Boost.Python

 Lightweight and Simple

 Less dependencies: the kernel only depends on the boost library

 Be simple to build, learn and use

 The key ideology are similar to Gaudi (a lightweight Gaudi)

 Similar concepts, such as algorithms, services

 Minimize the cost of migration from Gaudi

6



Software Based on SNiPER 

7

SNiPER Kernel

Optional Components

Special for Experiments

A compact kernel

The common functions for all experiments

A group of optional components

• Functions for collider physics experiments

• Functions for neutrino experiments

• …

Special functions for each experiment

• Data model

• Algorithms

• …



Prospect of a SNiPER Ecosystem

8

SNiPER Kernel

Functions for

collider experiments

Functions for

neutrino experiments

Etc…

JUNO software

nEXO software

Etc…

CEPC software

SNiPER Framework

LHAASO 

software

• Be attractive to community developers

• To find more application scenarios



Content

9

 General introduction

 Key concepts

 Examples

 Plan for CEPC



Key Concepts

 DLElement: Dynamically Loadable Element

 Task

 Algorithm

 Service

 Tool

 Data Memory Service

 Incident

 Property

 Log (message output)

10

Each DLElement object has a unique string name(path)



Task

 Similar to the Gaudi application manager

 Management of algorithms, services and sub-tasks

 Controlling the execution of algorithms

 Has its own data memory management service

 Has its own I/O management service

 There can be more than one Tasks in a single job (e.g. event mixing)

 All DLEs are organized in a tree structure

11

TopTask

Algorithm TaskServiceServiceService AlgorithmAlgorithm TaskTask

AlgorithmServiceServiceService AlgorithmAlgorithm



Algorithm in C++

 A concept inherited from Gaudi

 An unit of codes for Data Processing, (similar to marlin::Processor)

 the event calculation during event loop

 Most frequently used by users

 AlgBase, the abstract base class in SNiPER

 User’s algorithm must be inherited from AlgBase

 Its constructor takes one std::string parameter as the object name

 3 abstract interfaces must be implemented, they are called by SNiPER

automatically

 bool initialize() : called once per Task (at the beginning of a Task)

 bool execute() : called once per Event

 bool finalize() : called once per Task (at the end of Task)

12



Service in C++

 A concept inherited from Gaudi

 A piece of code for common uses

 Such as RootIOSvc, GeometrySvc …

 Be invoked by users, not limited to the event loop

 Be initialized before algorithms in each Task

 SvcBase, the abstract base class in SNiPER

 A new service must be inherited from SvcBase

 Its constructor takes one std::string parameter as the object name

 2 abstract interfaces must be implemented

 bool initialize() : called once per Task (at the beginning of a Task)

 bool finalize() : called once per Task (at the end of Task)

13



Tool

 A concept inherited from Gaudi

 Tool is also a Dynamically Loadable Element

 It belongs to an algorithm and helps the algorithm to organize code 

more clearly

 One algorithm can have one or more tools

 A tool can be accessed via its name

14



Task Execution

15

A state machine of the execution:



Data Processing with Task

 Task means the event processing procedure (a event loop)

 Task and SubTask provide a more flexible execution procedure

 SubTask(s) are executed synchronously on demand

 Can be used for different event loops

 Multi-Thread Computing (run each task in an individual thread)

 Task is a FSM (finite-state machine)

 Startup

 Ready

 Running

 Finalized

 Endup

16

Algorithm 4

Algorithm 5

Executed on Demand
Algorithm 1

Algorithm 2

Algorithm 3

Event Loop

Algorithm 6

Executed on Demand

TopTask SubTask SubTask



Data Memory Service

 Data memory service is in charge of the dynamically allocated 

memory, by which to hold events data that being processed

 Applications (in terms of algorithms) get events data via the data 

memory service and update them after processing

17

Event Data

Task



Optional Data Memory Services

18

 Different type of experiments have different requirements

 Several implementations to select

 DataBuffer for neutrino experiments

 A sequence of events in a time window

 Be able to handle events correlations

 PyDataStore: transfer data between C++ and Python

 Writing algorithms in Python

 Mixing execution of C++ algorithms and Python algorithms

 Examples/HelloWorld

 EventStore (to be implemented): similar to the TDS in Gaudi

 Reset event by event automatically



Incident

19

 Provides an additional degree of execution freedom:

• Incident: trigger the execution of corresponding handlers

• IncidentHandler: the wrapper of any specific procedure

1. Regular execution procedure jumps to another extra procedure

2. Back to the original procedure after all corresponding Handlers are 

executed

Incident

string name()

fire()

IIncidentHandler

handle(Incident&)

regist(string)

IIncidentHandler

handle(Incident&)

regist(string)

1, fire()

2, handle()

Regular Procedure Extra Procedure

 We can fire an incident anywhere according to the requirements

 It’s easy to define and use a customized incident



Incident Management

20

Incident

string name()

fire()

IIncidentHandler

handle(Incident&)

regist(string)

handle(Incident&) Handler
Handler

Handler
Handler

name1

name2

IncidentMgr

Incident::name() 

 IncidentMgr correlates incidents with their handlers

 Incidents are distinguished by its name, such as “BeginEvent”, “EndEvent”

 One IncidentHandler can be registered to several Incidents

 One Incident can be handled by several IncidentHandlers

 Currently Event I/O and SubTask execution are based on incident mechanism



Property

21

 Configurable variable at run time

 Declare a property in DLElement (C++ code)

 Configure a property in Python script

This mechanism is also used to create and load algorithms and services:

 Types can be declared as properties:

 scalar: C++ build in types and std::string

 std::vector with scalar element type

 std::map with scalar key type and scalar value type



Logs

22

 SniperLog: simple and thread-safe, supports different output levels

0: LogTest

2: LogDebug

3: LogInfo

4: LogWarn

5: LogError

6: LogFatal

 Each DLElement has its own LogLevel and can be set at run time

• very helpful for debugging

 The output message includes more information

• where it happens

• the message level

• The message contents



Parallel Computing

 Current Status of MT-SNiPER

 Run each SNiPER Task in a separated thread

 Based on Intel TBB, implemented the prototype SniperMuster

 Non-invasive, no change to the SNiPER kernel module

 Almost be transparent to users, easy to migrate from serial apps

 The testing of JUNO simulation shows a reasonable result

 Next

 More general

 Parallel algorithms

 MPI

23



Content

24

 General introduction

 Key concepts

 Examples

 Plan for CEPC



25

Create an Algorithm and a Service

 Package management

 C++ and Python coding

 CMT configuration

 Compile and run

Advanced topic: a job with multiple-tasks

svn co http://juno.ihep.ac.cn/svn/juno/people/zoujh/example/FirstToy



Coding and Running
 FirstToy C++

 FirstAlg, our first algorithm

 Show different level of logs

 FirstSvc, our first service

 A string message as property (can be modified in python)

 An interface to print the string message (answer())

 SecondAlg

 Call the service in an algorithm

 FirstToy Python

 Compile with CMT (or CMake), and run in Python

26

vs.



Advanced Topic: multiple-tasks job

The DLElement Map of 

ThirdAlg + SecondAlg + FirstSvc + Task

27

[ThirdAlg]

TomCat

Event Loop [SecondAlg]

Tomcat

Odd execution of toy::TomCat

[SecondAlg]

Tomcat

Even execution of toy::TomCat

[Task] toy

[Task] GoTask

[Task] ChessTask

SubTask(s) are executed on demand

Details can be found in ThirdAlg of FirstToy



Configuration with Python

28

Execute a dummy algorithm in SNiPER, create 2 root output files:

• Examples/DummyAlg/share/run.py

Each job must has at least 1 Task instance

Create and set the RootWriter service

Create a DummyAlg instance with a DummyTool

Set event number and begin the execution



Execution with Python

29

Startup

Initialization

Event loop

Messages for 

each event

Finalization

Endup



Plans for CEPC

 Common Functions

 EventStore for Collider Physics Experiments

 Data Model: be similar to the LCIOEvent, but ROOT based

 Data (ROOT format) I/O Services

 Before the end of April 2019 ?

 Convert the existed LCIO data to ROOT data for analysis

 Other services and algorithms

 Geometry service based on DD4hep

 marlin::Processor -> Sniper Algorithm migration should be easy

 Keep similar interfaces, such as data model and geometry

30



31

Thanks for your attention

Any questions?


