
A Quick Guide to the new

CEPC Software Framework

Zou Jiaheng

2019-04-01



Content

2

 General introduction

 Key concepts

 Examples

 Plan for CEPC



Offline Software System for HEP

3

Software Framework

ROOT

Geant4

etc.

S
im

u
la

ti
o
n

C
a
lib

ra
ti
o
n

R
e
c
o

n
s
tr

u
c
ti
o
n

A
n
a
ly

s
is

G
e
n
e
ra

to
r

Other

Tools & Svcs

EDM

Data I/O

Database

Geometry

 Application layer

 Basis layer

 Common services

 Software framework

 External libraries and 

tools

The appearance of a system is mainly determined by the framework

 Software architecture, organization, strategy

 Software development standards, user interfaces

 Framework: programming problems

 Physicists: concentrate on calculation algorithms



Considerations on CEPC

 Marlin: the framework at present

 The developing is not very active now

 Is not very modernized: hard to support parallel computing…

 Gaudi

 Very powerful, but very complex and heavy

 A new framework developed by ourselves?

 Integration with new technologies, such as parallel computing

 Long Term and Rapid Supporting

 Feasibility: we have the experience of SNiPER

4



The SNiPER Framework

5

 Originally Developed for JUNO

 Fulfill the requirements for neutrino experiments

 Comprehensive and generality is considered at the beginning

 A general purpose framework, not only for neutrino experiments

 Functions as a Framework

 Modularized, extensible, customizable, and friendly to use

 High performance

 Current Status

 Has been used in JUNO, LHAASO, CSNS, nEXO

 Is still being in developing for more application scenarios

 https://github.com/SNiPER-Framework/sniper

https://github.com/SNiPER-Framework/sniper


Technical Overview of SNiPER

 Hybrid of C++ and Python

 C++ is used in key functions for better performance

 Python is flexible: configuration, simple algorithms and services…

 Binding with Boost.Python

 Lightweight and Simple

 Less dependencies: the kernel only depends on the boost library

 Be simple to build, learn and use

 The key ideology are similar to Gaudi (a lightweight Gaudi)

 Similar concepts, such as algorithms, services

 Minimize the cost of migration from Gaudi

6



Software Based on SNiPER 

7

SNiPER Kernel

Optional Components

Special for Experiments

A compact kernel

The common functions for all experiments

A group of optional components

• Functions for collider physics experiments

• Functions for neutrino experiments

• …

Special functions for each experiment

• Data model

• Algorithms

• …



Prospect of a SNiPER Ecosystem

8

SNiPER Kernel

Functions for

collider experiments

Functions for

neutrino experiments

Etc…

JUNO software

nEXO software

Etc…

CEPC software

SNiPER Framework

LHAASO 

software

• Be attractive to community developers

• To find more application scenarios



Content

9

 General introduction

 Key concepts

 Examples

 Plan for CEPC



Key Concepts

 DLElement: Dynamically Loadable Element

 Task

 Algorithm

 Service

 Tool

 Data Memory Service

 Incident

 Property

 Log (message output)

10

Each DLElement object has a unique string name(path)



Task

 Similar to the Gaudi application manager

 Management of algorithms, services and sub-tasks

 Controlling the execution of algorithms

 Has its own data memory management service

 Has its own I/O management service

 There can be more than one Tasks in a single job (e.g. event mixing)

 All DLEs are organized in a tree structure

11

TopTask

Algorithm TaskServiceServiceService AlgorithmAlgorithm TaskTask

AlgorithmServiceServiceService AlgorithmAlgorithm



Algorithm in C++

 A concept inherited from Gaudi

 An unit of codes for Data Processing, (similar to marlin::Processor)

 the event calculation during event loop

 Most frequently used by users

 AlgBase, the abstract base class in SNiPER

 User’s algorithm must be inherited from AlgBase

 Its constructor takes one std::string parameter as the object name

 3 abstract interfaces must be implemented, they are called by SNiPER

automatically

 bool initialize() : called once per Task (at the beginning of a Task)

 bool execute() : called once per Event

 bool finalize() : called once per Task (at the end of Task)

12



Service in C++

 A concept inherited from Gaudi

 A piece of code for common uses

 Such as RootIOSvc, GeometrySvc …

 Be invoked by users, not limited to the event loop

 Be initialized before algorithms in each Task

 SvcBase, the abstract base class in SNiPER

 A new service must be inherited from SvcBase

 Its constructor takes one std::string parameter as the object name

 2 abstract interfaces must be implemented

 bool initialize() : called once per Task (at the beginning of a Task)

 bool finalize() : called once per Task (at the end of Task)

13



Tool

 A concept inherited from Gaudi

 Tool is also a Dynamically Loadable Element

 It belongs to an algorithm and helps the algorithm to organize code 

more clearly

 One algorithm can have one or more tools

 A tool can be accessed via its name

14



Task Execution

15

A state machine of the execution:



Data Processing with Task

 Task means the event processing procedure (a event loop)

 Task and SubTask provide a more flexible execution procedure

 SubTask(s) are executed synchronously on demand

 Can be used for different event loops

 Multi-Thread Computing (run each task in an individual thread)

 Task is a FSM (finite-state machine)

 Startup

 Ready

 Running

 Finalized

 Endup

16

Algorithm 4

Algorithm 5

Executed on Demand
Algorithm 1

Algorithm 2

Algorithm 3

Event Loop

Algorithm 6

Executed on Demand

TopTask SubTask SubTask



Data Memory Service

 Data memory service is in charge of the dynamically allocated 

memory, by which to hold events data that being processed

 Applications (in terms of algorithms) get events data via the data 

memory service and update them after processing

17

Event Data

Task



Optional Data Memory Services

18

 Different type of experiments have different requirements

 Several implementations to select

 DataBuffer for neutrino experiments

 A sequence of events in a time window

 Be able to handle events correlations

 PyDataStore: transfer data between C++ and Python

 Writing algorithms in Python

 Mixing execution of C++ algorithms and Python algorithms

 Examples/HelloWorld

 EventStore (to be implemented): similar to the TDS in Gaudi

 Reset event by event automatically



Incident

19

 Provides an additional degree of execution freedom:

• Incident: trigger the execution of corresponding handlers

• IncidentHandler: the wrapper of any specific procedure

1. Regular execution procedure jumps to another extra procedure

2. Back to the original procedure after all corresponding Handlers are 

executed

Incident

string name()

fire()

IIncidentHandler

handle(Incident&)

regist(string)

IIncidentHandler

handle(Incident&)

regist(string)

1, fire()

2, handle()

Regular Procedure Extra Procedure

 We can fire an incident anywhere according to the requirements

 It’s easy to define and use a customized incident



Incident Management

20

Incident

string name()

fire()

IIncidentHandler

handle(Incident&)

regist(string)

handle(Incident&) Handler
Handler

Handler
Handler

name1

name2

IncidentMgr

Incident::name() 

 IncidentMgr correlates incidents with their handlers

 Incidents are distinguished by its name, such as “BeginEvent”, “EndEvent”

 One IncidentHandler can be registered to several Incidents

 One Incident can be handled by several IncidentHandlers

 Currently Event I/O and SubTask execution are based on incident mechanism



Property

21

 Configurable variable at run time

 Declare a property in DLElement (C++ code)

 Configure a property in Python script

This mechanism is also used to create and load algorithms and services:

 Types can be declared as properties:

 scalar: C++ build in types and std::string

 std::vector with scalar element type

 std::map with scalar key type and scalar value type



Logs

22

 SniperLog: simple and thread-safe, supports different output levels

0: LogTest

2: LogDebug

3: LogInfo

4: LogWarn

5: LogError

6: LogFatal

 Each DLElement has its own LogLevel and can be set at run time

• very helpful for debugging

 The output message includes more information

• where it happens

• the message level

• The message contents



Parallel Computing

 Current Status of MT-SNiPER

 Run each SNiPER Task in a separated thread

 Based on Intel TBB, implemented the prototype SniperMuster

 Non-invasive, no change to the SNiPER kernel module

 Almost be transparent to users, easy to migrate from serial apps

 The testing of JUNO simulation shows a reasonable result

 Next

 More general

 Parallel algorithms

 MPI

23



Content

24

 General introduction

 Key concepts

 Examples

 Plan for CEPC



25

Create an Algorithm and a Service

 Package management

 C++ and Python coding

 CMT configuration

 Compile and run

Advanced topic: a job with multiple-tasks

svn co http://juno.ihep.ac.cn/svn/juno/people/zoujh/example/FirstToy



Coding and Running
 FirstToy C++

 FirstAlg, our first algorithm

 Show different level of logs

 FirstSvc, our first service

 A string message as property (can be modified in python)

 An interface to print the string message (answer())

 SecondAlg

 Call the service in an algorithm

 FirstToy Python

 Compile with CMT (or CMake), and run in Python

26

vs.



Advanced Topic: multiple-tasks job

The DLElement Map of 

ThirdAlg + SecondAlg + FirstSvc + Task

27

[ThirdAlg]

TomCat

Event Loop [SecondAlg]

Tomcat

Odd execution of toy::TomCat

[SecondAlg]

Tomcat

Even execution of toy::TomCat

[Task] toy

[Task] GoTask

[Task] ChessTask

SubTask(s) are executed on demand

Details can be found in ThirdAlg of FirstToy



Configuration with Python

28

Execute a dummy algorithm in SNiPER, create 2 root output files:

• Examples/DummyAlg/share/run.py

Each job must has at least 1 Task instance

Create and set the RootWriter service

Create a DummyAlg instance with a DummyTool

Set event number and begin the execution



Execution with Python

29

Startup

Initialization

Event loop

Messages for 

each event

Finalization

Endup



Plans for CEPC

 Common Functions

 EventStore for Collider Physics Experiments

 Data Model: be similar to the LCIOEvent, but ROOT based

 Data (ROOT format) I/O Services

 Before the end of April 2019 ?

 Convert the existed LCIO data to ROOT data for analysis

 Other services and algorithms

 Geometry service based on DD4hep

 marlin::Processor -> Sniper Algorithm migration should be easy

 Keep similar interfaces, such as data model and geometry

30



31

Thanks for your attention

Any questions?


