

CEPC calorimetry status: a brief summary of the topical workshop

Yong Liu (IHEP) CEPC Physics and Detector Meeting Apr. 3, 2019

Introduction

- Topical Workshop on the CEPC Calorimetry
 - March 11-14, 2019
 - <u>https://indico.ihep.ac.cn/event/9195/</u>
 - ~45 participants (and via remote connection)
 - From China, France, Germany, Italy, Korean, US

- The first workshop: dedicated to CEPC calorimeters
 - Cover a large range of options
 - Major options: PFA-oriented, crystal, dual readout
 - Fruitful and in-depth discussions
 - Motivations, (expected) performance, pros/cons, cost, occupancy, etc.
 - General impression: very positive feedback from many participants

- CEPC CDR: baseline options
 - PFA-oriented: high granularity, sampling calorimeters
 - Optimized for precision measurements of jets ($\sim 30\%/\sqrt{E}$)
 - ECAL: silicon, or scintillator-SiPM (sensitive); tungsten (absorber)
 - HCAL: scintillator-SiPM, or RPC (sensitive); steel (absorber)
- CEPC CDR: alternative option
 - Dual-readout: Cherenkov and scintillation signals (f_{EM} for each event)
 - Aim to improve the intrinsic hadronic energy resolution ($\sim 30\%/\sqrt{E}$)
- New proposals: based on crystals
 - Homogenous calorimeter : excellent intrinsic energy resolution
 - Segmentation: to be optimized for PFA
 - Several interesting talks presented

PFA calorimetry: CALICE Si-W ECAL (1)

- Overview
 - 300k wafers (2500m²), 1.2M ASICs; #channels: 77M
 - Cost estimate for ILD: ~158 M€
 - 30 layers (24X₀), R=1.8 m
 - Possibly reduce cost by 30-40% for CEPC: <=100 M€
 - 26 layers, R=1.5 m
- Cost driver: Si-sensor
 - ~30% of the SiW-ECAL total cost
 - New: thicker wafers (8"), guard ring studies
- R&D: towards engineering prototype
 - To address technical challenges: complex components
 - Mass production and QA of Si-modules (ASU+Slabs)
 - ~11 years R&D till now: 1st ECAL tech. prototype

The 1st long slab, under test at DESY (2018)

PFA calorimetry: CALICE Si-W ECAL (2)

Vincent Boudry

- Hermetic ECAL: response uniformity
 - Impact from cracks in simulation
- Static and Dynamic Simulations
 - Impact from weight and seismic vibrations
- Services: rails, cables, pipes
- Active cooling: synergy with CMS-HGCAL

PFA calorimetry: CALICE AHCAL

- Overview
 - Scintillator-SiPMs + Steel
 - #channels: ~8M; 48 layers ($6\lambda_I$)
 - Cost estimate for ILD: ~45 M€
 - PCB: a key cost driver
 - Complex design and stringent requirements
 - 13.2 M€ for readout boards in ILD-AHCAL
- R&D: towards engineering prototype
 - To address technical challenges
 - Mass production (automated), QA, scalable DAQ
 - 38-39 layers, ~22k channels (~1% ILD-HCAL barrel)
 - Finished in 2018, 3 beam tests at CERN

Validating PFA Performance

Possible Approaches

- A fully realistic test of PFA in a test beam is (close to) impossible
- requires "jets", tracking and momentum measurement & calorimetry covering all particles

Frank Simon (fsimon@mpp.mpg.de) 2

150

200

Distance between shower axes [mm]

250

100

Validating PFA Performance

Possible Approaches

- Still, combined measurements of tracking and calorimetry remain interesting and in some cases this can also be done with reasonable effort in beam tests:
- One example: Tagged photons can be used to test electron / photon separation, bremsstrahlung recovery, ...

... has for example been used to study a very compact SiW ECAL for luminosity measurements at Linear Colliders

 For hadrons this is much more difficult - impossible to tag neutral hadron energy in that way...: Combined measurements of tracking and calorimetry with a target can be made, but there is very little control - unlikely to yield quantitative performance results, but useful as an integration exercise

Thoughts on PFA Calorimetry at CEPC - March 2019

- Performance in Geant4 simulation
 - EM resolution: $10.3\%/\sqrt{E} + 0.3\%$
 - Hadronic resolution: $\sim 34\%/\sqrt{E}$
- Cost estimate

	Quantity	U.C.(€)	Cost (M€)
Total volume External surface	474 m ³ 382 m ²		
-ibre length	230k km	250	57.4
_ead	3338 ton	2000	6.7
# of fibre / SiPM	191M	0.25	47.7
# of ASIC	6M	3	17.9
# of FPGA	23k	500	11.6
Services at al.			13.0
	Total		154.3
+	3.7 (8.4) M fo	r Iron (Co	pper)

Dual-readout calorimeter: wedge geometry

4/3/2019

Dimensions of a module

Dual-readout: open issues for CEPC

- Absorber: lead, brass, iron
- Geometry of active material: tiles vs. fibres
- Segmentation: longitudinal and lateral
- Fibre-readout granularity
 - Group several SiPMs in readout
- Front-end electronics (ASIC)
 - Analog charge integration: e.g. SPIROC
 - Digital sampling : e.g. AARDVARC
- Energy reconstruction
 - Dual-readout (established) vs machine learning (new)

2018 RD52 Brass module: ~112 cm long, 12×12 mm²

Roberto Ferrari (INFN)

Crystal calorimeters

Ren-Yuan Zhu (Caltech)

- Overview
 - Not included in CEPC CDR
 - Optimal intrinsic energy resolution
 - $\sim 3\%/\sqrt{E}$ or better achieved for electrons/gammas
 - Many successful HEP applications since 1975
 - Nal (Crystal Ball), BGO (L3), Csl (BaBar, Belle, BES3, CLEO...), PbWO (CMS)
 - Future crystal calorimeters in HEP
 - LSO/LYSO for COMET, HERD, and HL-LHC
 - CsI and BaF2:Y for Mu2; PWO for PANDA
- CEPC requirements: not as stringent as HL-LHC
 - Response time, radiation hardness
 - Wide open for innovative detector concepts

Crystal calorimeter for CEPC

- Cost estimate: crystal raw materials only (made by YL)
 - PbWO crystal for CEPC ECAL: ~131 M\$
 - ~12 m³ for barrel, ~4.4 m³ for 2 endcaps
 - 24X0 in total, R=1.8m, Z=4.7m
 - Based on the price \$8/cc for PbWO (volume at 10m³ level)
- Physics motivations
 - Electrons' Bremsstrahlung: energy recovery
 - Improve angular resolution, and gamma counting
 - Recoil photons: new physics and neutrino counting
- Several new designs proposed for CEPC ECAL
 - Christopher Tully (Princeton), Sarah Eno (Maryland)
 - Yong Liu (IHEP)
 - Junguang Lv, Zhigang Wang (IHEP)
 - Manqi Ruan, Yuexin Wang (IHEP)

Crystal calorimeter: new designs for CEPC (1)

- Comprehensive simulation studies
 - Quantitative studies in Geant4
- Impacts to energy resolution from
 - Dead materials
 - Readout boards, cooling plates, cables
 - Sub-detector in front: tracker
 - Photostatistics (SiPM)
- Calorimeter: other performance
 - Single/pair EM showers
 - e^-/π^\pm discrimination
- Timing layers
 - LYSO bars: ~20 ps timing resolution
 - Time-of-Flight: Particle ID performance
- Compatible with PFA and dual readout

Christopher Tully (Princeton), Sarah Eno (Maryland)

Segmented Crystal Calorimeter Module

Crystal calorimeter: new designs for CEPC (2)

- Design: PFA homogenous ECAL
 - Silicon layers (high granularity): positioning
 - Crystal layers: optimal energy resolution
 - Note: all PFA calos till now are sampling calorimeters
- First simulation studies in Geant4
 - Energy sampling fraction >90% (with BGO)
 - Stochastic term from energy fluctuations <1%
 - Also investigated the performance (trade-off) when using some absorber for compactness
- Open issues: worthwhile for further studies
 - Photostatistics from SiPM, crystal-SiPM coupling
 - Impact from dead materials: e.g. between layers
 - Longitudinal sampling frequency
 - Transverse granularity in crystal layers

$$\sigma_E/E = \frac{0.8\%}{\sqrt{E}} \oplus 0.3\%$$

If high-density lead glass (~6g/cm³) can be produced, an interesting cost-effective option

Crystal calorimeter: new designs for CEPC (3)

- Option 1: crystal tiles + absorber
 - Cost estimate: 0.7-2B CNY; expected performance: $\sigma_E/E \leq 6\%/\sqrt{E}$
- Option 2: crystal blocks
 - Cost estimate: ~1.2B CNY; expected performance: $\sigma_E/E \leq 4\%/\sqrt{E}$

MC simulation studies: not done yet; neccessary for performance/optimization

Junguang Lv, Zhigang Wang (IHEP)

Option 1: Sampling ECAL Sensitive Unite(SU) 1.5mm/W+2mm/PS+SiPM , 60 layers 10mmx10mmx2mm PS: SiPM: 3mmx3m, 5µm pitch, PDE>10% -Read Unite (RU) Cost 30 RL ~20 M ch ~ 2 billion Υ , 20 RL \sim 13 M ch \sim 1.3 bilion Υ . 10 RL ~6.7Mch ~ 0.67 bilion ¥ Expected energy resolution $\sigma E/E \leq 6\%/\sqrt{E(GeV)}$? Need detailed MC study Tot: 90mm/W + 120mm/PS + 90mm/Electronics

Sampling fraction and light output are much higher than the Sci-ECAL in CDR, necessary to get a good energy resolution.

Two or three even six SU connected together to readout as one channel

SiPM, $3mm \times 3mm$, 15 Y/piece. Electronics: 100 Y/channel?

Option 2: Segmented crystal ECAL

Tot: 10X22mm(25 rad. length)PbWO4 + 10X8mm /Electronics

Cost

Crystal:5\$/cc? 1.46X10⁷cc ~0.51 billion ¥ ~0.66 billion¥ Electronics. 6.6M ch \sim 1.2 billion Y Total:

Readout unit:

PbWO4 crystal : 10mmx10mmx22mm SiPM: 6mmx6mm, 5µm pitch, PDE>10% 10 layers

The linear range of SiPM: 4.8 x10⁵ pe dE/dX of MIPs in =22.4MeV ~ 150pe? Dynamic range of is 1-3.2x10³ MIPs

Reference : CMS PbWO4 ECAL

Need detailed MC study

Crystal calorimeter: new designs for CEPC (4)

Manqi Ruan, Yuexin Wang (IHEP)

- Design: crystal bars
 - Read out at both sides
 - Rely on precision timing measurements
 - To reduce #channels
 - BGO #channels ~ 1.4M << 25M (Si-W ECAL)
- Simulation studies
 - Separation of multi-particle shower (key issue)
 - Physics requirement of separation (2 or 4 jets)
 - Energy portion of π^0 in jets
 - $\pi^0 \rightarrow \gamma \gamma$ at different energy
 - Timing info may deal with ambiguity
 - Timing resolution: $1 \times 1 \times 40$ cm³ BGO crystal
 - Hit-position dependent
 - Double-ended readout: 5 45ps
 - Effective position resolution, ~7mm

• LEP/L3, SSC/L*, LHC ATLAS/CMS detectors

- Benchmarks: $H \rightarrow \gamma \gamma$, $H \rightarrow 4 \mu$, $Z' \rightarrow II$
- Lepton, photon, jet energy precision; b-tagging, vertex (inner tracking precision, now add timing detector to handle pile-up)
- Both ATLAS and CMS emphasize muon detection (never compromise the muon spectrometer, but different treatment for momentum measurement)

• ILC, CEPC, CLIC (FCC-ee?) (Benchmark to guide the detector design?)

- PFA (finely segmented calorimeter) (Bench mark: Separate $Z/W \rightarrow qq$?)
- Relax some requirement on lepton/photon energy measurement?
- Factor of 10 100 more readout channels?
- CEPC philosophy: never compromise EM calorimeter and inner tracker? Or to build the most powerful PFA calorimeter?

Summary

- Triggered in-depth discussions on several options
- Just beginning: many more interesting designs and studies will follow
- Next topical workshop for CEPC calorimetry: under discussion