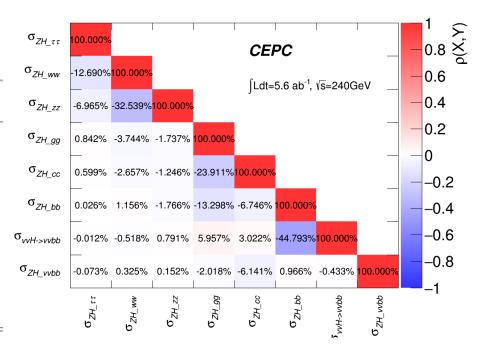


CEPC Higgs Combination

Updates since November


Zhang Kaili

CDR's results

	Estimated	l Precision
Property	CEPC-v1	CEPC-v4
n_H	$5.9~{ m MeV}$	$5.9~{ m MeV}$
H	2.7%	2.8%
$\sigma(ZH)$	0.5%	0.5%
$\sigma(\nu \bar{\nu} H)$	3.0%	3.2%

, ,				
Decay mode	$\sigma \times BR$	BR	$\sigma \times BR$	BR
$H ightarrow b ar{b}$	0.26%	0.56%	0.27%	0.56%
$H \to c \bar c$	3.1%	3.1%	3.3%	3.3%
$H \rightarrow gg$	1.2%	1.3%	1.3%	1.4%
$H \to WW^*$	0.9%	1.1%	1.0%	1.1%
$H \to ZZ^*$	4.9%	5.0%	5.1%	5.1%
$H \rightarrow \gamma \gamma$	6.2%	6.2%	6.8%	6.9%
$H {\to} Z\gamma$	13%	13%	16%	16%
$H {\to} \tau^+ \tau^-$	0.8%	0.9%	0.8%	1.0%
$H \rightarrow \mu^+ \mu^-$	16%	16%	17%	17%
$\mathrm{BR_{inv}^{BSM}}$	_	<0.28%	_	<0.30%

Channels Table (2018.11)

All scaled to 240 GeV, 5.6ab⁻¹

Si	gnal	Drosision	Si	gnal	Drasision	Sig	nal	Dracisian
Z	Н	Precision	Z	H	Precision	Z	Н	Precision
	H->qq			H->WW			Η→γγ, Ζγ	
	bb	1.32%		lvlv	9.52%	μμ		23.7%
ee	СС	13.5%	ee	evqq	4.56%	VV	γγ	10.5%
	gg	7.22%		μνqq	3.93%	qq		9.84%
	bb	0.99%		lvlv	7.29%	VV	Ζγ(qqγ)	15.7%
μμ	сс	9.54%	μμ	evqq	3.90%	vv	H(WW fusio	on)
	gg	5.01%		μνqq	3.90%	VV	bb	3.00%
	bb	0.46%		qqqq	1.90%		Н→μμ	
qq	СС	11.1%	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	evqq	4.65%	qq		
	gg	3.64%	VV	μνqq	4.14%	ee		17.1%
	bb	0.39%		lvlv	11.5%	μμ	μμ	17.170
vv	СС	3.83%	qq	qqqq	1.75%	VV		
	gg	1.47%		H->ZZ			Η→ττ	
H->I	nvisible		VV	μμαα	8.26%	ee		2.75%
qq		232%	VV	eeqq	40%	μμ		2.61%
ee	ZZ(vvvv)	370%	μμ	vvqq	7.32%	qq	ττ	0.95%
μμ		245%	ZH bkg c	ontribution	19.4%	VV		2.66%

- Advised by Jianming
 - For Higgs Width: Dominant.
 - $H \rightarrow ZZ$. Esp. for $Z \rightarrow qq$.
 - other vvH than bb;
 - Others, $H \rightarrow Z\gamma$; $Z \rightarrow \tau\tau$, $H \rightarrow anything$
- Advised by Zhen
 - $H \rightarrow inclusive$; Correlation.
- Full hadronic b/c/g/W/Z.
- Long term goal.

	Z	ee	μμ	VV	qq
WW	ev+ev				
	μν+μν				
	ev+μv				
	ev+qq				
	μν+qq				
	qq+qq				
	Z	ee	μμ	VV	qq
ZZ	ee+qq				
	μμ+qq				
	vv+qq				
	11+11				
(Invi)	vv+vv				
	qq+qq				
	II+vv				·

New analysis since Novemeber

• H→invisible

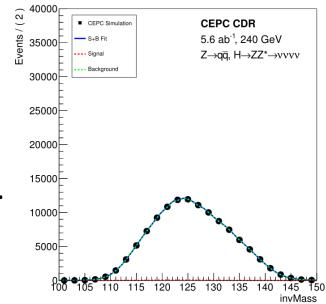
By Tan Yuhang

- $153\% \rightarrow 71\%$.
- $Z \rightarrow qq$, $H \rightarrow \mu\mu$

By Ran Kunlin

- 19% → ~10%
- $H \rightarrow ZZ$

By Kong Lingteng, Alex


- Result even worse since bkg are underestimated in previous study.
- τ finding

By Yu Dan

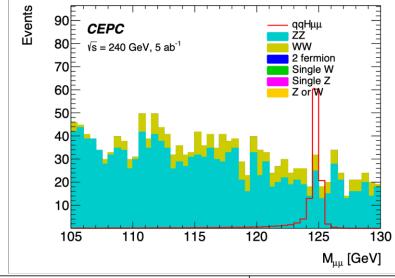
- Could use tau relevant variables in all analysis
- Not applied for most channels yet.

H→invisible

- Major improved in qq.
 - Add tau information
 - Bkg total is ~6x smaller than Moxin's study.

Process	qqH_inv	2f	single_w	single_z	szorsw	ZZ	ww	zzorww	ZH	total_bkg	$\frac{\sqrt{S+B}}{S}$
Total generate	383068	801811976	19517400	9072952	1397088	6389429	50826213	20440840	1140496	910596394	7.879 %
$100GeV < M_{recolil}^{visible} < 150GeV$	369001	44494225	1388874	822725	229216	507558	1752824	658202	98165	49951789	1.922 %
$30GeV < P_t^{visible} < 60GeV$	281557	4593818	741546	188509	106037	204895	902902	316297	56883	7110887	0.966 %
$20GeV < P_{visible} < 58GeV$	259869	717680	373630	81835	50917	69855	516699	161088	51050	2022754	0.581 %
$85GeV < M_{visible} < 102GeV$	216155	234894	115978	53848	17545	36325	171538	53279	11125	694532	0.441 %
$\Delta \phi_{visible} < 175^{\circ}$	210034	151338	112375	51521	17222	34799	167144	51859	10688	596946	0.428 %
90GeV <visible energy<117gev<="" td=""><td>210011</td><td>151304</td><td>112321</td><td>51514</td><td>17216</td><td>34788</td><td>167047</td><td>51837</td><td>10683</td><td>596710</td><td>0.428 %</td></visible>	210011	151304	112321	51514	17216	34788	167047	51837	10683	596710	0.428 %
$N_{neutral} > 15, N_{lepton} = 0$	200035	2133	6758	45257	22	31116	53848	4480	7477	151091	0.296 %
$M_{Tau} < 105 GeV, Impact_{Tau} < 0.00007$	190319	795	2568	42254	4	28681	33499	902	6641	115344	0.290 %
Effectiveness	49.683%	0.000%	0.013%	0.466%	0.000%	0.449%	0.066%	0.004%	0.582%	0.013%	

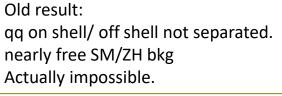
ZH final state studied	Relative precision on $\sigma(ZH)/BR$	Upper limit on $BR(H \rightarrow inv)$
$Z \rightarrow e^+e^-$, H \rightarrow inv	341%	0.83%
$Z \rightarrow \mu^+ \mu^-$, H \rightarrow inv	191%	0.51%
$Z \rightarrow q\overline{q}$, H \rightarrow inv	78%	0.27%
Combination	71%	0.26%

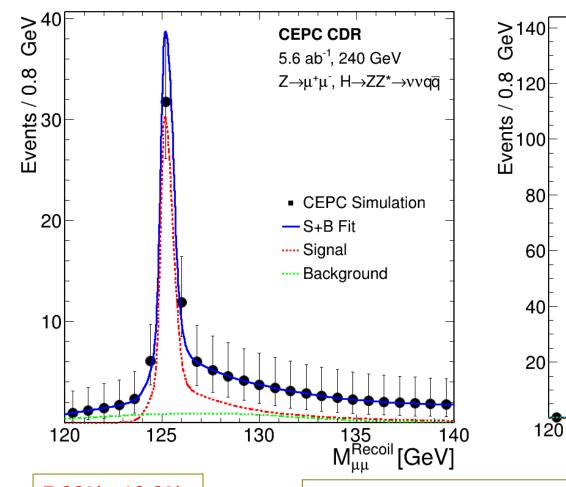

	Previous	Now
Z->ee	370%	341%
Z->mm	245%	191%
Z->qq	232%	78%
Combined	153%	71%

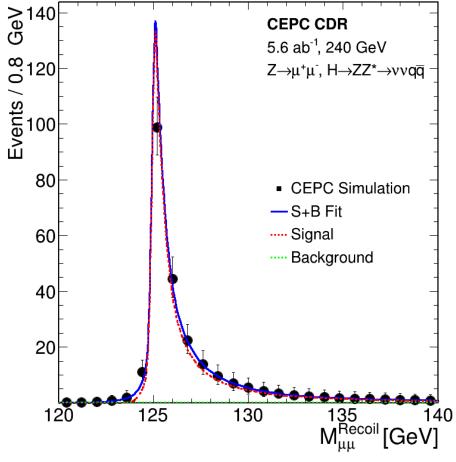
$Z \rightarrow qq$, $H \rightarrow \mu\mu$

- Use latest sample to avoid the zero Z width
 - Cut-based significance in [124,125] GeV: 8.74σ

• Total uncertainty ~10% in 5.6iab.

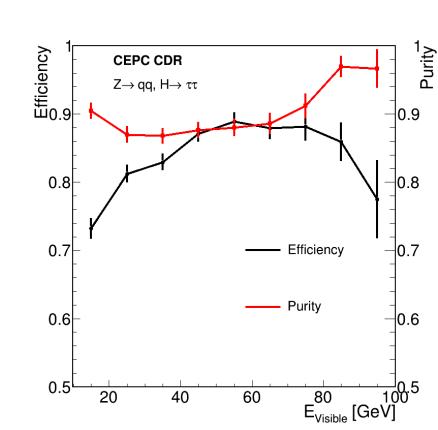

Events / 0.5 GeV		EPC = 240 GeV, 5	ab ⁻¹		MC Model Sig. Bkg.	
	20 -	++17++	╵ _╇ ╪╅╵ ┿╵		***	
20	105	110	115	120	125 Μ _{μμ} [130 GeV]


	q	qh_e2e2)
[%]	Stat	Eff	Rel
Initial	148.85	100	100
$N_mum > 0$, $N_mup > 0$	148	99.43	99.43
105 < M_mumu < 130 GeV	123.75	83.14	83.62
25 < N_particle < 115	123.02	82.64	99.41
55 < M_qq < 125 GeV	122.02	81.97	99.19
P_ppmumu < 32 GeV, 195 < E_ppmumu < 265 GeV	121.32	81.51	99.43
35 < E_mum < 100 GeV, 35 < E_mup < 100 GeV	120.89	81.22	99.65
16 < p_mumu < 72 GeV	120.31	80.82	99.51
N_em < 6, N_ep < 6, N_e < 10	119.33	80.17	99.19
E_em < 10 GeV, E_ep < 10 GeV, E_ee < 19 GeV	116	77.93	97.21
124 < m_mumu < 125 GeV	73.27	49.22	63.17


$Z \rightarrow \mu\mu$, $H \rightarrow ZZ \rightarrow \nu\nu qq$

Current: This plot only show qq on shell. (qq off shell side has much higher bkg.)

7.32%->12.2%


Need more manpower and effort on H->ZZ.

$Z \rightarrow \tau \tau$ extrapolation

- Currently all $Z \to \tau \tau$ events are not considered
 - Now tau finding has enough efficiency/purity
- Estimate from $Z \to \mu\mu$:
 - Signal
 - Cx 6.75/6.77 = 99.7%. Ignored.
 - For simplified case (Non-jets), 90%;
 - Jet case, 65%. (80%*80%).
 - SM bkg: 2x.
 - If using M_{uu}^{recoil}
 - width 5x larger;

$Z \rightarrow \tau \tau$ extrapolation

Sig	nal	Precision	
Z	Н		
	bb	0.99%	
	СС	9.54%	
	gg	5.01%	
	WW	2.47%	
ττ	γγ	24%	
	μμ	100%	
	ττ	2.70%	
	invisible	191%	
	ZZ(vvqq)	12.2%	

Current $\tau\tau$:

Sig	nal	Precision
Z	Н	Precision
	bb	1.2%
	СС	11%
	gg	8%
	WW	3.1%
ττ	γγ	24%
	μμ	100%
	ττ	2.9%
	invisible	211%
	ZZ(vvqq)	13.8%

bb, WW and $\tau\tau$ would gain a bit in extrapolation. Not so significant. Need more validation.

CEPC	(5.6ab ⁻¹)
0.50%	σ(ZH)
0.27%	$\sigma(ZH) * Br(H \rightarrow bb)$
3.3%	$\sigma(ZH) * Br(H \rightarrow cc)$
1.3%	$\sigma(ZH) * Br(H \rightarrow gg)$
1.0%	$\sigma(ZH) * Br(H \to WW)$
5.1%	$\sigma(ZH) * Br(H \rightarrow ZZ)$
0.8%	$\sigma(ZH) * Br(H \to \tau\tau)$
6.8%	$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$
10%	$\sigma(ZH) * Br(H \rightarrow \mu\mu)$
3.0%	$\sigma(vvH) * Br(H \rightarrow bb)$
0.26%	$Br_{upper}(H \rightarrow inv.)$
16%	$\sigma(ZH) * Br(H \to Z\gamma)$
2.8%	Width

Results

(5.6ab ⁻¹)	CEPC 2018.11	2019.4
$\sigma(ZH)$	0.50%	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	
$\sigma(ZH) * Br(H \to gg)$	1.3%	
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	
$\sigma(ZH) * Br(H \to \tau\tau)$	0.8%	
$\sigma(ZH) * Br(H \to \gamma\gamma)$	6.8%	
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	10%
$\sigma(vvH) * Br(H \rightarrow bb)$	3.0%	
$Br_{upper}(H \rightarrow inv.)$	0.41%	0.26%
$\sigma(ZH) * Br(H \to Z\gamma)$	16%	
Width	2.8%	

Fcc-ee CDR: CERN-ACC-2018-0057

Collider	HL-LHC	ILC_{250}	CLIC ₃₈₀	$LEP3_{240}$	CEPC ₂₅₀	$FCC-ee_{240+365}$		
Lumi (ab ⁻¹)	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{ m H}/\Gamma_{ m H}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{ m HTT}/g_{ m HTT}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
$\delta g_{ m H}$ μμ $/g_{ m H}$ μμ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{\mathrm{H}\Upsilon\Upsilon}/g_{\mathrm{H}\Upsilon\Upsilon}$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	_	_	_	_	_	_	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0