

Abdualazem Fadol

April 29, 2019

Introduction

2D efficiency mapping

2D sensitivity mapping

Optimisation results

Summary

 \Box B-veto to reject $ttZ \rightarrow 4\ell$ background;

Events categorized into two categories:

$$\begin{tabular}{ll} D & $N_{jet}^{Central} = 0$ \\ D & $N_{jet}^{Central} \ge 1$ \end{tabular}$$

 \Box Mapping $p_T^{4\ell}$ and E_T^{miss} using two techniques:

- 2D efficiency maps: $\epsilon(S) \times 1 \epsilon(B)$;
- By considering the qqZZ* background only; and
- 2D sensitivity maps: significance defined by $s/\sqrt{S+B}$.

Two-dimensional efficiency mapping

Signal efficiency

Signal efficiency

Background efficiency and rejection

Signal efficiency times background rejection

Signal efficiency times background rejection

Two-dimensional sensitivity mapping

2D sensitivity mapping

11

Abdualazem | Four leptons final states

2D sensitivity mapping

Optimisation results

13

Need to make an assumption for the cross-section NWA $(\sigma \times BR(R \rightarrow SH \rightarrow 4\ell + Met))$?

- □ The efficiency optimisation appears at $p_T^{4\ell}$ > 30 GeV and E_T^{miss} > 35 GeV;
- The optimal selection values for the sensitivity method is high than the efficiency method;
- \Box It is around $p_T^{4\ell} > 50$ GeV and $E_T^{miss} > 55$ GeV; and
- Need to do some check to include the cross-section times the branching ratio.

Thank you!

Event selection

□ Using the nominal selection, *HZZ*, for the four-lepton;

	Physics Objects	
	Electrons	
Loose Likelihood quality electrons with hit in innermost layer $E_T > 7$ GeV and $ n < 2.47$		
Interaction point constraint: $ z_0 \cdot \sin \theta < 0.5 \text{ mm}$ (if ID track is available)		
Interaction p	Muone	
1	needs identification with $n_{-} > 5 GeV$ and $ u < 2.7$	
Loose identification with $p_T > 5$ GeV and $ \eta < 2.7$		
Caro-tagged muons with $p_T > 15$ GeV and $ \eta < 0.1$, segment-tagged muons with $ \eta < 0.1$		
Stand-alone and silicon-associated forward restricted to the 2.5 < $ \eta $ < 2.7 region		
Combined, stand-alone (with ID hits if available) and segment-tagged muons with $p_T > 5$ GeV		
Interaction point constraint: $ d_0 < 1 \text{ mm}$ and $ z_0 \cdot \sin \theta < 0.5 \text{ mm}$ (if ID track is available)		
	JETS	
anti-kr iet	s with bad-loose identification, $p_T > 30$ GeV and $ n < 4.5$	
Jets with $p_T < 60$ GeV and $ n < 2.4$ are required to pass the pile-up iet rejection		
	at the 92% working point (IVT score > 0.59)	
Lets with $n_{\rm e} < 50$ GeV and $ n > 2.5$ are required to pass the forward pile-up jet rejection		
sets with pr < 50 dev and pr > 2.5 are required to pass the forward priorup jet rejection		
	at the 90% working point.	
	D-TAGGING	
Previously selected jets	with $ \eta < 2.5$ passing the MV2_c19 algorithm at its 70% working point	
	OVERLAP REMOVAL	
Jets within .	$\Delta R < 0.2$ of an electron or $\Delta R < 0.1$ of a muon are removed	
	Event Selection	
QUADRUPLET	- Require at least one quadruplet of lentons consisting of two pairs of same-flavour	
SELECTION	opposite-charge leptons fulfilling the following requirements:	
	- pτ thresholds for three leading leptons in the guadruplet: 20, 15 and 10 GeV	
	- At most 1 calo-tagged, stand-alone or silicon-associated muon per quadruplet	
	- Leading di-lepton mass requirement: 50 < m12 < 106 GeV	
	- Sub-leading di-lepton mass requirement: mirrobald < mtd < 115 GeV	
	- $\Delta R(\ell, \ell') > 0.10$ for all lepton pairs in the quadruplet	
	- Remove quadruplet if alternative same-flavour opposite-charge	
	di-lepton gives $m_{\ell\ell} < 5 \text{ GeV}$	
	- Keep all quadruplets passing the above selection	
ISOLATION NEEDS UPDATING	- Contribution from the other leptons of the quadruplet is subtracted	
	- Muon track isolation ($\Delta R = 0.30$): $\Sigma p_T/p_T < 0.15$	
	- Muon calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_T/p_T < 0.30$	
	- Electron track isolation ($\Delta R = 0.20$) : $\Sigma E_T/E_T < 0.15$	
	- Electron calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T / E_T < 0.20$	
IMPACT	- Apply impact parameter significance cut to all leptons of the quadruplet	
PARAMETER	- For electrons: $d_0/\sigma_{d_0} < 5$	
SIGNIFICANCE	- For muons: d ₀ /σ _{d₀} < 3	
Best	- If more than one quadruplet has been selected, choose the quadruplet	
QUADRUPLET	with highest Higgs decay ME according to channel: 4µ, 2e2µ, 2µ2e and 4e	
VERTEX	- Require a common vertex for the leptons:	
SELECTION	- $\chi^2/ndof < 5$ for 4μ and < 9 for others decay channels	

□ RSH-model can be embedded into 2HDM+S or 2HDM+a

	The N2HDM under
	Theoretical and Experimental Scrutiny
Eur. Phys. J. C manuscript No. (will be inserted by the editor)	
	Margarete Mühlleitner ^{1 *} , Marco O. P. Sampaio 2 $^{\dagger},$ Rui Santos $^{3,4\sharp},$ Jonas Wittbrod t $^{1.5\sharp}$
Phenomenological signatures of additional scalar bosons at the LHC	¹ Institute for Theoretical Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
Stefan von Buddenbrack ^{al} , Nabaran Chakrabarty ^{kal} , Alan S. Cornell ^{kal} , Drenak	² Departamento de Física, Universidade de Aveiro and CIDMA, Campas de Santiago, 3810-183 Aveiro, Portugal
Kar ⁽¹⁾ , Mukesh Kumar ⁽²⁾ , Tanumoy Mandal ⁽⁴⁾ , Bruce Mellado ⁽²⁾ , Biswarup Mukhopadhyaya ^{h(2)} , Robert G. Reed ^{1,1} and Xifeng Ruan. ^{1,1}	³ ISEL - Instituto Superior de Engenharia de Lishoa, Instituto Politécnico de Lishoa 1959-007 Lisboa, Portugal
School of Physics, University of the Witewatersand, Adamscherg, Wits 2059, South Africa. "Regional Carmie for Accelerate-should Purkle Physics. Individ-Chandin Research Issinian, Chantag Road, Bransi, Allahabad - 211 019, Iadia. "National Institute for Discordinal Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witewatersand, "National-Institute wide Roend at Acceleration and Acceleration and Acceleration and Acceleration and Acceleration and Accelerational Physics, University of the Witewatersand, "National-Institute wide Roend at Acceleration and Acceleration	⁴ Centro de Física Teórica e Computacional, Facaldade de Ciéncias, Universidade de Lisbon, Campo Grande, Edifício C8 1749-016 Lisbon, Portugal
³ Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.	⁵ Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
	χ .
	· · ·
H S	•· X
λ_{HhS}	$\lambda_{S_{XX}}$ · · · ·
	h `.

Figure: Changing $H \rightarrow R$, $h(125) \rightarrow H$; a theory study is going on.

18

Figure: The invariant mass of the first (left) and the second (right) lepton pairs.

19

Figure: The invariant mass of the four leptons final state.

Abdualazem | Four leptons final states

20

Figure: The missing transverse energy (left), and $p_T^{4\ell}$ of the 4-lepton (right).

21

Figure: Number of the jet multiplicity (left), and number of b-jet (right).