

2D efficiency mapping

2D sensitivity mapping

Optimisation results

Summary

- \Box Explores the presence of a heavy scalar boson, *R*;
- □ Produced in gluon-gluon fusion in association with Met;
- \Box The resonance decays to lighter scalar *H* and *S* bosons;
- □ *H* decays into four leptons through *ZZ* bosons; and
- \Box *S* decays to a pair of neutrinos.

□ Using the nominal selection, *HZZ*, for the four-lepton;

 \Box B-veto to reject $ttZ \rightarrow 4\ell$ background;

□ Events categorized into two categories:

$$\Box N_{jet}^{Central} = 0$$

$$\Box N_{jet}^{Central} \ge 1$$

5

 \Box Mapping $p_T^{4\ell}$ and E_T^{miss} using two techniques:

- 2D efficiency maps: $\epsilon(S) \times [1 \epsilon(B)];$
- By considering the qqZZ* background only; and
- 2D sensitivity maps: significance defined by $s/\sqrt{S+B}$.

Abdualazem | Four leptons final states

Cut-flow tables

	$(m_R, m_H) = (450, 220)$	qqZZ*	ggZZ*	tīZ	Z + jets		VVV	$s/\sqrt{s+b}$	
4ℓ	68.01±0.41	2474.93±7.43	345.02±1.04	26.89±0.61	2.59±0.24	3.28±0.56	13.74±0.15	1.26	1.27
B-veto	63.24±0.40	2358.82±7.33	330.25±1.02	4.45±0.25	2.38±0.23	1.94±0.41	12.96±0.15	1.20	1.21
N _{Cjet} = 0	28.20±0.26	1582.11±6.15	208.34±0.81	0.99±0.10	1.82±0.20	0.65±0.23	7.22±0.10	0.66	0.66
$(p_T^{4\ell} > 0 \& E_T^{miss} > 0) \text{ GeV}$	28.20±0.26	1582.11±6.15	208.34±0.81	0.99±0.10	1.82±0.20	0.65±0.23	7.22±0.10	0.66	0.66

 \Box The $qqZZ^*$ background is dominant;

- $\Box ggZZ^*/qqZZ^*$ is 14.0%
- $\Box t\bar{t}Z/qqZZ^*$ is 1.0%
- $\Box t\bar{t}/qqZZ^*$ is 0.1%
- □ *VVV/qqZZ** is 0.6%

Two-dimensional efficiency mapping

Signal efficiency

Signal efficiency

Background efficiency and rejection

Signal efficiency times background rejection

Signal efficiency times background rejection

Two-dimensional sensitivity mapping

2D sensitivity mapping

2D sensitivity mapping

Optimisation results for the zero central jet

Optimisation results for the zero central jet

Optimisation results for the zero central jet

Optimisation results for one or more central jet

Optimisation results for one or more central jet

Optimisation results for one or more central jet

Summary

Study the optimisation of RSH signal using cut-based optimisation; \Box For $N_{iet}^{Central} = 0$ □ Sensitivities: Efficiencies: $\begin{array}{ll} \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{miss}) = (35, 45) \\ \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{miss}) = (65, 65) \\ \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{miss}) = (75, 85) \\ \end{array} \begin{array}{ll} \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{miss}) = (35, 45) \\ \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{miss}) = (55, 55) \\ \end{array}$ \Box For $N_{iet}^{Central} \geq 1$ Sensitivities: Efficiencies: $\begin{array}{ll} \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{\textit{miss}}) = (5,65) \\ \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{\textit{miss}}) = (5,85) \\ \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{\textit{miss}}) = (5,85) \\ \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{\textit{miss}}) = (35,95) \\ \end{array} \begin{array}{ll} \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{\textit{miss}}) = (5,95) \\ \square \ (p_{\mathsf{T}}^{4\ell}, E_{\mathsf{T}}^{\textit{miss}}) = (5,95) \end{array}$

Thank you!

Additional slides

24

Figure: The invariant mass of the first (left) and the second (right) lepton pairs.

Additional slides Efficiency map for one or more central jet

Additional slides Efficiency map for one or more central jet

Additional slides Sensitivity for one or more central jet

27

Abdualazem | Four leptons final states

Additional slides Sensitivity for one or more central jet

Additional slides

