

# Brief introduction to the physics of ultra-relativistic heavy-ion collisions



# Xiaoming Zhang







# Standard model





 $\mathcal{L} = \sum \overline{\psi}_{q,a} (i\gamma^{\mu}\partial_{\mu}\delta_{ab} - g_{s}\gamma^{\mu}t_{ab}^{C}\mathcal{A}_{\mu}^{C} - m_{a}\delta_{ab})\psi_{q,b} - \frac{1}{4}F_{\mu\nu}^{A}F^{A,\mu\nu}$ 



$$\mathcal{L} = \sum_{q} \overline{\psi}_{q,a} (i\gamma^{\mu}\partial_{\mu}\delta_{ab} - g_{s}\gamma^{\mu})$$
$$F^{A}_{\mu\nu} = \partial_{\mu}\mathcal{A}^{A}_{\nu} - \partial_{\nu}\mathcal{A}^{A}_{\mu} - g_{s}f_{ABC}$$

 $\psi^{\mu} t^{C}_{ab} \mathcal{A}^{C}_{\mu} - m_a \delta_{ab} \psi_{q,b} - \frac{1}{\Lambda} F^{A}_{\mu\nu} F^{A,\mu\nu}$ 

















# History of the universe







# History of the universe









# History of the universe







# Ultra-relativistic heavy-ion collisions





# Ultra-relativistic heavy-ion collisions

## made by Chun Shen



Kinetic freeze-out

> "Small bang" — study of the QGP • History of the early universe **Properties of the strongly** interacting force under extreme conditions of temperature and energy density **Deep layer structure of matter** in the current universe

free streaming

π

τ~10 fm/c

 $\tau \sim 10^{15} \, \text{fm/c}$ 



# QGP signatures

T (fm/c)

suppression of high-mass resonances

## photon production

based on particles produced in the early stage

jet quenching

"direct" info from the medium

modification of lowmass resonances

## hard robes

# soft

strangeness enhancement

## probes

based on particles produced in the late stage flow profile

..etc

"non-direct" info from the medium



# QCD phase diagram





# **QGP factories**







# Charged particle multiplicity



• ALICE: Pb–Pb at 5.02 TeV – highest energy so far ➡ For 0–5% most central collisions, confirms trend from lower energies



# Temperature of the QGP



- 30% higher than at RHIC (Au–Au at  $\sqrt{s_{NN}}=200$  GeV)

Low- $p_T$ : 2.6 $\sigma$  excess w. r. t. models in 0–20% central — thermal contribution

•  $T_{\rm eff} = 304 \pm 11$ (stat.)  $\pm 40$  (syst.) MeV in central collisions — way above  $T_{\rm c} \sim 170$  MeV

ALICE Phys. Lett. B754 (2016) 235







# Particle production

ALICE Phys. Rev. C93 (2015) 024917



- **Blast-wave model**: simplified hydrodynamic model with 3 parameters
- $\beta_T$ : radial expansion velocity
- *T*<sub>kin</sub>: kinetic freeze-out temperature
- n: velocity profile

 $m_T = \gamma I$ 

Schnedermann, Sollfrank and Heinz Phys. Rev. C 48, 2462

$$\propto \int_{0}^{R} m_{T} I_{0} \left( \frac{p_{T} \sinh(\rho)}{T_{Kin}} \right) K_{1} \left( \frac{m_{T} \cosh(\rho)}{T_{Kin}} \right) r d$$

$$\overline{m^{2} + p_{T}^{2}} \qquad \rho = \tanh^{-1}(\beta_{T}) \qquad \beta_{T} = \beta_{s} \left( \frac{r}{R} \right)$$



r



# Particle production

ALICE Phys. Rev. C93 (2015) 024917



Global Blast-Wave fit to

- $\pi$  (0.5-1 GeV/c), K (0.2-1.5 GeV/c), p (0.3-3.0 GeV/c)
  - ALICE, pp,  $\sqrt{s} = 7 \text{ TeV}$

• ALICE, p-Pb, 
$$\sqrt{s_{NN}} = 5.02 \text{ TeV}$$

⊃ ALICE, Pb-Pb, 
$$\sqrt{s_{NN}}$$
 = 2.76 TeV

- ALICE Preliminary, p-Pb,  $\sqrt{s_{NN}} = 8.16$  TeV
- ALICE Preliminary, Pb-Pb,  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

0.3 0.4 0.2 0.1 0.5 0.6

![](_page_19_Picture_13.jpeg)

![](_page_19_Picture_14.jpeg)

# Azimuthal anisotropy

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

- to the reaction plane ( $\Psi_{RP}$ ) coefficients  $v_2$ ,  $v_3$ ,  $v_4$ ...  $v_n$
- Elliptic flow ( $v_2$ ): spatial anisotropy pressure gradients leads to momentum anisotropy – hydrodynamics
- freeze-out conditions...

• Quantify anisotropy: Fourier decomposition of particle azimuthal distribution relative

Higher order flow: bring additional constraints on the initial conditions, η/s, EoS,

![](_page_20_Picture_10.jpeg)

# Azimuthal anisotropy

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_7.jpeg)

![](_page_21_Picture_8.jpeg)

# Hard probes: medium tomography

- Produced in the early stage of heavy-ion collisions
  - Experience the full evolution of the QCD medium, and interact with particles in the medium and loss energy
- Efficient probes for understanding the transport properties of the medium
- **Nuclear modification factor**:  $R_{AA}$  sensitive to the presence of the medium

$$R_{
m AA}(p_{
m T}) = rac{{
m d}N_{
m AA}/{
m d}p_{
m T}}{< T_{
m AA} > {
m d}\sigma_{
m pp}/{
m d}p_{
m T}} egin{array}{l} {
m QCD metric} \ {
m QCD metric} \ {
m QCD metric} \ {
m QCD value} \$$

•  $R_{AA} = 1$ , if there is no medium modification

## **Shopping list**

- High  $p_T$  particles, jets
- Open heavy flavours, quarkonia  $(J/\psi, \psi'... Y...)$

![](_page_22_Figure_11.jpeg)

![](_page_22_Figure_12.jpeg)

![](_page_22_Picture_13.jpeg)

# RAA of charged particles and jets

- Jet: a spray of particles from hard parton fragmentation
  - Get closer access to parton energy

![](_page_23_Figure_3.jpeg)

![](_page_23_Figure_4.jpeg)

- Agreement between ALICE and ATLAS
  - Contribution of low momentum jet fragments to jet energy is small
- R<sub>CP</sub> of jets and single hadrons are compatible
- Indication that the momentum is redistributed to larger angles

![](_page_23_Picture_9.jpeg)

![](_page_23_Figure_10.jpeg)

# RAA of charged particles and jets

![](_page_24_Figure_2.jpeg)

redistributed to larger angles

![](_page_24_Picture_5.jpeg)

![](_page_24_Figure_6.jpeg)

![](_page_25_Figure_0.jpeg)

# Heavy flavours in the

Heavy quarks (charm and beauty): power

![](_page_26_Figure_2.jpeg)

Total charm cross section in HIC is expected to scale the number of binary collisions in pp-like collisions

- $\tau_{c/b} \sim 0.01 0.1 \text{ fm/c} < \tau_{QGP} (\sim 0.3 \text{ fm/c})$
- Production cross section calculable with pQCD ( $m_c$ ,  $m_b \gg \Lambda_{QCD}$ )
- the deconfined medium

| QC        | DMe                       | ediun         |            |                       | 27  |
|-----------|---------------------------|---------------|------------|-----------------------|-----|
| erful pro | bes of the                | e Quark-C     | Gluon      | Plasma (Q             | GP) |
| <b>e</b>  | Charm F                   | ladron        | Cros       | s Section dơ/dy (µ    | b)  |
|           |                           | $D^0$         |            | $41 \pm 1 \pm 5$      |     |
| ► (µ      |                           | $D^+$         |            | $18 \pm 1 \pm 3$      |     |
|           | Au+Au 200 GeV<br>(10-40%) | $D_s^+$       | 15 ± 1 ± 5 |                       |     |
| π         |                           | $\Lambda_c^+$ |            | 78 ± 13 ± 28 <b>*</b> |     |
| ewrt      |                           | Total         |            | 152 ± 13 ± 29         |     |
|           | p+p 200 GeV               | Total         |            | 130 ± 30 ± 26         |     |

• Produced in initial hard scatterings (high  $Q^2$ ) at the early stage of heavy-ion collisions:

Experience the entire evolution of the QCD medium — probe transport properties of

![](_page_26_Figure_12.jpeg)

![](_page_26_Figure_13.jpeg)

# Heavy flavours in the QCD Medium

![](_page_27_Figure_2.jpeg)

## Nuclear modification factor (R<sub>AA</sub>): heavy quark in-medium energy loss

- Elastic (radiative) vs. inelastic (collisional) processes
- Color charge (Casimir factor) and mass (eg dead-cone effect) dependence

## Medium modification of heavy-flavour hadron production

• Hadronization via coalescence may modify the  $D_{s}$ + / non-strange D and  $\Lambda_{c}$  / D ratios

![](_page_27_Picture_10.jpeg)

# Heavy quark energy loss

![](_page_28_Figure_1.jpeg)

## • Indication of $R_{AA}(D) < R_{AA}(J/\psi \leftarrow B)$ at the LHC

## • R<sub>AA</sub> of open heavy-flavour particles at the RHIC — hint of $R_{AA}(D) < R_{AA}(B)$

Indication of mass dependence of heavyquark energy loss:  $\Delta E_{\rm c} > \Delta E_{\rm b}$ 

![](_page_28_Picture_7.jpeg)

![](_page_28_Figure_8.jpeg)

![](_page_28_Picture_9.jpeg)

![](_page_28_Picture_10.jpeg)

# Heavy quark transport properties

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

# Heavy quark transport properties

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_3.jpeg)

# Charmed baryon production

![](_page_31_Figure_1.jpeg)

ALI-PREL-321872

- New  $\Lambda_c R_{AA}$  in 2018 Pb–Pb data, similar suppression as  $D_s^+$
- Hint of higher  $\Lambda_c$  / D<sup>0</sup> ratio in Pb–Pb collisions than small systems
  - Described by model including both coalescence and fragmentation

ALI-PREL-321682

![](_page_31_Picture_8.jpeg)

# Direct flow of open charm

- Sensitive to the early time EM fields in the collisions
  - Provide constraint for CME related physics
- Charm dragged by tilted bulk
  - $\rightarrow$  Larger  $v_1$  for D mesons, probe the longitudinal profile of the initial matter

![](_page_32_Figure_5.jpeg)

![](_page_32_Figure_9.jpeg)

Hint of positive slope with a significance of 2.7 $\sigma$  at low  $p_T$ Similar trend observed for charged particles, but different magnitude

# J/ $\psi$ production in Pb–Pb collisions

![](_page_33_Figure_1.jpeg)

![](_page_33_Picture_4.jpeg)

# The "pre-LHC" paradigm

## **Heavy-ion collisions**

- Probe in details the properties of high density and temperature nuclear matter
  - ➡ Hot nuclear matter effects the QGP

## **Control experiment**

- p–Pb collisions: investigation of cold nuclear matter (CNM) effects
  - nPDF, Saturation, Color Glass Condensate..
- pp collisions
  - Important baseline to compare other systems
  - Test pQCD calculations at TeV domain, parton hadronization in vacuum

![](_page_34_Figure_11.jpeg)

![](_page_34_Picture_12.jpeg)

# The "Pandora box"

## ALICE *Nature Physics* **13** (2017) 535

![](_page_35_Figure_2.jpeg)

- Smooth evolution of particle production from small to large systems vs charge multiplicity
  - Strangeness enhancement considered defining feature of heavy-ions — now seen in high-multiplicity pp / p-Pb!
- Where all this comes from?
  - Initial stages effects?
  - Better understanding of the observables we use in heavy-ion for small systems?
  - Common mechanism of particle production?
  - ➡ Final state effects?

![](_page_35_Picture_10.jpeg)

![](_page_35_Figure_11.jpeg)

# Particle production in small systems

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_36_Figure_4.jpeg)

# Mass Difference of (Anti-)nuclei

nuclei sector (<sup>3</sup>He and deuterons)

![](_page_37_Figure_2.jpeg)

- Improved by one to two orders of magnitude compared to earlier measurements
- First measurement of binding-energy for (anti-)<sup>3</sup>He
- Confirms CPT invariance for light nuclei

![](_page_37_Figure_7.jpeg)

![](_page_37_Picture_8.jpeg)

(GeV/c<sup>2</sup>) <sup>w</sup>

# More rare probes...

## ALICE Phys. Lett. B781 (2018) 8

![](_page_38_Figure_2.jpeg)

# Study of rare probes, non-prompt D mesons, Σ<sub>c</sub>, Ξ<sub>c</sub>... are on the road Exploring new techniques, such as machine learning...

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

Backup

# QCD phase diagram

![](_page_40_Figure_1.jpeg)

![](_page_40_Picture_2.jpeg)

# **QGP** factories

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_3.jpeg)

| _ | - |   | <u>^</u> | - | - | _ | - |
|---|---|---|----------|---|---|---|---|
| _ | - |   |          | _ | - | _ | - |
| _ | - |   |          | - | - | - | - |
| _ | - |   | _        | _ | - | _ | - |
| _ | - |   | _        | _ | - | _ | - |
| - | - |   |          | - | - | - | - |
|   | e |   |          |   |   |   |   |
|   |   |   |          | - | _ |   |   |
| - | - | ) |          | - | - | - | - |
| - | - |   |          | - | - | - | - |
| - | - |   |          | - | - | - | - |
| _ | - |   |          | - | - | - | - |
| _ | - |   |          | - | _ | _ | - |
| - | - | • | _        | - | - | - | - |
|   |   |   |          |   |   |   |   |
|   | _ |   |          |   |   |   | _ |
|   |   |   |          |   |   |   |   |

# Flow harmonics correlations

![](_page_42_Figure_1.jpeg)

![](_page_42_Picture_2.jpeg)

# Flow harmonics correlations

![](_page_43_Figure_1.jpeg)

![](_page_43_Picture_2.jpeg)

![](_page_43_Figure_3.jpeg)

## Flow harmonics correlations

![](_page_44_Figure_1.jpeg)

ALI-PREL-96671

![](_page_44_Picture_3.jpeg)

# Heavy quark energy loss

![](_page_45_Figure_1.jpeg)

![](_page_45_Picture_5.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_46_Picture_1.jpeg)