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The Monte Carlo method
• What it is: a numerical technique for calculating probabilities 

and related quantities using sequences of random numbers.


• The usal steps:


• (1) Generate sequence                     uniform in [0, 1].


• (2) Use this to produce another sequence                        
distributed according to some pdf  f(x) in which we are 
interested (x can be a vector)


• MC generated values = “simulated data”, “simulation” 
==> use for testing statistical procedures
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r1, r2, …, rm
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What it is:  a numerical technique for calculating probabilities 
and related quantities using sequences of random numbers. 

The usual steps: 

(1)  Generate sequence r1, r2, ..., rm uniform in [0, 1]. 

(2)  Use this to produce another sequence x1, x2, ..., xn 
       distributed according to some pdf  f (x)  in which 
       we’re interested (x can be a vector). 

(3)   Use the x values to estimate some property of  f (x), e.g., 
       fraction of x values with a < x < b gives 

 →  MC calculation = integration (at least formally) 

MC generated values = ‘simulated data’ 
 →  use for testing statistical procedures 

The Monte Carlo method 

x1, x2, …, xn
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Random number generators
• Goal: generate uniformly distributed values in [0, 1].


• Tools/algorithms to generate random numbers are called “random number 
generator”


• There are many algorithms to do that, such as multiplicative linear 
congruential generator (MLCG), Mersenne twister algorithm, etc., 


• They are implemented, and we can use directly:


• C++ standard library(stdlib):  rand() function can generate random 
numbers.   


• ROOT:  TRandom, TRandom2, TRandom3, where TRandom3 gives 
much better results [F. James, Comp. Phys. Comm. 60 (1990) 111]   
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http://www.cplusplus.com/reference/cstdlib/rand/
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The transformation method
• Given                      uniform in [0, 1], find                        that follow f(x) by 

finding a suitable transformation x(r)


• Remind: previously, we learned 
given pdf f(x) and function a(x),  
ask the pdf of a: g(a).


• Here, is given pdf f(x) and g(r),  
ask the function x(r):


• That is, set F(x) = r   and solve for x(r)

!4

r1, r2, …, rm x1, x2, …, xn
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The transformation method 
Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn 
that follow  f (x) by finding a suitable transformation  x (r). 

Require: 

i.e. 

That is,       set and solve for  x (r). 
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The transformation method 
Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn 
that follow  f (x) by finding a suitable transformation  x (r). 

Require: 

i.e. 

That is,       set and solve for  x (r). 
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Example of the transformation method
• Exponential pdf: 


• One has to solve for x(r) analytically 
to use this method, not practical for 
arbitrary f(x)

!5

f(x; ξ) =
1
ξ

e−x/ξ (x ≥ 0)
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Example of the transformation method 

Exponential pdf: 

Set and solve for  x (r). 

→ works too.) 
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Example of the transformation method 

Exponential pdf: 

Set and solve for  x (r). 

→ works too.) 
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The acceptance-rejection method

• (1) Generate a random number x, uniform in 
[xmin, xmax], i.e.                                             , 
r1 is uniform in [0, 1]. 


• (2) Generate a 2nd independent random 
number u uniformly distributed between 0 
and fmax, i.e. u=r2fmax


• (3) If u<f(x), then accept x, if not, reject x 
and repeat


• Practical for f(x) with complicated shapes.
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x = xmin + r1 (xmax − xmin)
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The acceptance-rejection method 

Enclose the pdf in a box: 

(1)  Generate a random number x, uniform in [xmin, xmax], i.e. 
r1 is uniform in [0,1]. 

(2)  Generate a 2nd independent random number u uniformly 
       distributed between 0 and  fmax, i.e. 

(3)  If u <  f (x), then accept x.  If not, reject x and repeat. 

Enclose the pdf in a box
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Example with acceptance-rejection method

• Generate random number x in [-1, 1]


• Generate another random number u 
in [0, 3/4]


• If u <= f(x), take the x, and fill it in 
the histogram. If not, drop the x. 

!7
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Example with acceptance-rejection method 

If dot below curve, use  
x value in histogram. 
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Example with acceptance-rejection method 

If dot below curve, use  
x value in histogram. 
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Improving efficiency of the acceptance-rejection 
method

• The fraction of accepted points is equal to the fraction of the box’s area under the curve. 


• For very peaked distributions, the fraction maybe very low, thus the algorithm may be 
slow.


• Improve by enclosing the pdf f(x) in a curve C h(x) that conforms to f(x) more closely, 
where h(x) is a pdf from which we can generate random values and C is a constant:


• (1) Generate random variable x  
according to C h(x) by other  
method, such as “transformation  
method”.


• (2) Generate another random  
number u uniformly distributted 
between 0 and C h(x)


• (3) If u < f(x), take accept x.  

!8G. Cowan  Statistical Data Analysis / Stat 2 10 

Improving efficiency of the  
acceptance-rejection method 

The fraction of accepted points is equal to the fraction of 
the box’s area under the curve. 

 For very peaked distributions, this may be very low and 
 thus the algorithm may be slow. 

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms  
to f(x) more closely, where h(x) is a pdf from which we can  
generate random values and C is a constant. 

Generate points uniformly  
over C h(x). 

If point is below f(x),  
accept x. 
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Moving to the practical 
programing training. 

!9



Backup slides, Probability 
Density Functions.
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Probability functions
• We will now introduce a short list of popular probability functions and 

pdfs. 


• For each functions, we show expectation value, variance, a plot and 
discuss of some properties and applications. 


• See also chapter on probability from pdg.lbl.gov
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http://pdg.lbl.gov
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Binomial distribution
• Consider N independent experiments (Bernoulli trails):


• outcome of each is “success” or “failure”


• probability of “success” on any given trail is p


• Define discrete random variable n = number of successes (0 ≤ n ≤ N)


• Probability of a specific outcome (in order), e.g. “s s f s f” is:


• But order is not important; there are                          ways (permutations) 
to get n  successes in N trails, total probability for n is sum of probabilities 
for each permutation. 

!12

pp(1 − p)p(1 − p) = pn(1 − p)N−n

N!/[n!(N − n)!]
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Binomial distribution
• The binomial distribution is therefore


• For the expectation value and variance, we find

!13

f(n; N, p) =
N!

n!(N − n)!
pn(1 − p)N−n

random variable parameters

E[n] =
N

∑
n=0

nf(n; N, p) = Np

V[n] = E [n2] − (E[n])2 = Np(1 − p)
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Binomial distribution
• Binomial distribution for different parameters values


• Example: observe N decays of W bosons, in which n is the number of              
decays (number of “success”), and p is the branching ratio (probability of “success”).  

!14
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Binomial distribution  (3) 
Binomial distribution for several values of the parameters: 

Example:  observe N decays of W±,  the number n of which are  
W→µν is a binomial r.v., p = branching ratio. 

W → μv
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Multinomial distribution
• Like binomial, but now m outcomes instead of two, probabilities are


• For N trails, we want the probability to obtain:


• This is the multinomial distribution for 

!15
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Multinomial distribution 
Like binomial but now m outcomes instead of two, probabilities are 

For N trials we want the probability to obtain: 

n1 of outcome 1, 
n2 of outcome 2, 

 ⠇ 
nm of outcome m. 

This is the multinomial distribution for 

⃗p = (p1, …, pm),  with 
m

∑
i=1

pi = 1

f( ⃗n ; N, ⃗p ) =
N!

n1!n2!⋯nm!
pn1

1 pn2
2 ⋯pnm

m

⃗n = (n1, …, nm)
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Multinomial distribution
• Now consider outcome i as “success”, all others are “failure”.


• Note, i (success) and NOT-i (failure), actually form a “binomial” structure 


• One can also find the covariance to be 


• Example:                               represents a histogram with m bins, N total 
entries, all entries independent.

!16

E [ni] = Npi, V [ni] = Npi (1 − pi) for all i

⃗n = (n1, …, nm)
Vij = Npi (δij − pj)
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Poisson distribution 
Consider binomial n in the limit 

→ n follows the Poisson distribution: 

Example:  number of scattering events 
n with cross section σ found for a fixed 
integrated luminosity, with 

Poisson distribution
• Consider binomial n in the limit 


• n follows the Poisson distribution:


• Example: number of scattering events n 
with cross section σ found for a fixed 
integrated luminosity, with 
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N → ∞, p → 0, E[n] = Np → ν

f(n; ν) =
νn

n!
e−ν (n ≥ 0)

E[n] = ν, V[n] = ν

ν = σ∫ Ldt
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Uniform distribution 
Consider a continuous r.v. x with �∞ < x < ∞ .  Uniform pdf is: 

N.B.  For any r.v. x with cumulative distribution F(x), 
y = F(x) is uniform in [0,1]. 

Example:  for π0 → γγ, Eγ is uniform in [Emin, Emax], with 

Uniform distribution
• Consider a continuous random variable with                    

Uniform pdf is


• Note, for any random variable x with cumulative 
distribution F(x), y = F(x) is uniform in [0,1]


• Example: for                     is uniform in                , with

!18
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Uniform distribution 
Consider a continuous r.v. x with �∞ < x < ∞ .  Uniform pdf is: 

N.B.  For any r.v. x with cumulative distribution F(x), 
y = F(x) is uniform in [0,1]. 

Example:  for π0 → γγ, Eγ is uniform in [Emin, Emax], with 

−∞ < x < ∞

π0 → γγ, Eγ [Emin, Emax]

Emin =
1
2

Eπ(1 − β), Emax =
1
2

Eπ(1 + β)

β = v/c
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Exponential distribution
• The exponential pdf for the continuous random variable x is defined by:


• Example: proper decay time t of an unstable particle

!19
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Exponential distribution 
The exponential pdf for the continuous r.v. x is defined by: 

Example:  proper decay time t of an unstable particle 

(τ = mean lifetime) 

Lack of memory (unique to exponential): 
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Exponential distribution 
The exponential pdf for the continuous r.v. x is defined by: 

Example:  proper decay time t of an unstable particle 

(τ = mean lifetime) 

Lack of memory (unique to exponential): 

G. Cowan  Statistical Data Analysis / Stat 1 50 

Exponential distribution 
The exponential pdf for the continuous r.v. x is defined by: 

Example:  proper decay time t of an unstable particle 

(τ = mean lifetime) 

Lack of memory (unique to exponential): 
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Gaussian distribution
• The Gaussian (normal) pdf for a continuous random variable x is defined by


• Special case:                            “standard Gaussian”


• If y ~ Gaussian with        , then                          follows 

!20
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Gaussian distribution 
The Gaussian (normal) pdf for a continuous r.v. x is defined by: 

Special case: µ = 0, σ2 = 1   (‘standard Gaussian’): 

(N.B. often µ, σ2 denote 
mean, variance of any 
r.v., not only Gaussian.) 

If y ~ Gaussian with µ, σ2, then  x = (y � µ) /σ  follows φ(x). G. Cowan  Statistical Data Analysis / Stat 1 51 

Gaussian distribution 
The Gaussian (normal) pdf for a continuous r.v. x is defined by: 

Special case: µ = 0, σ2 = 1   (‘standard Gaussian’): 

(N.B. often µ, σ2 denote 
mean, variance of any 
r.v., not only Gaussian.) 

If y ~ Gaussian with µ, σ2, then  x = (y � µ) /σ  follows φ(x). 

μ = 0, σ2 = 1

φ(x) =
1

2π
e−x2/2, Φ(x) = ∫

x

−∞
φ (x′�) dx′�

μ, σ2 x = (y − μ)/σ φ(x)
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Gaussian pdf and the Central Limit Theorem

• The Gaussian pdf is very useful because almost any random variable that is a 
sum of a large number of small contributions follows it. This follows from the 
Central Limit Theorem:


• For n independent random variables     with finite variances      , otherwise 
arbitrary pdfs, consider the sum


• In the limit                ,  y is a Gaussian random variable with 


• Measurement errors are often the sum of many contributions, so frequently 
measured values can be treated as Gaussian random variables. 

!21

xi σ2
i

n → ∞
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Gaussian pdf and the Central Limit Theorem 
The Gaussian pdf is so useful because almost any random 
variable that is a sum of a large number of small contributions 
follows it.  This follows from the Central Limit Theorem: 

For n independent r.v.s xi with finite variances σi2, otherwise 
arbitrary pdfs, consider the sum 

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s. 

In the limit n → ∞, y is a Gaussian r.v. with 
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The Gaussian pdf is so useful because almost any random 
variable that is a sum of a large number of small contributions 
follows it.  This follows from the Central Limit Theorem: 

For n independent r.v.s xi with finite variances σi2, otherwise 
arbitrary pdfs, consider the sum 

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s. 

In the limit n → ∞, y is a Gaussian r.v. with 



iSTEP 2019 Lectures Hengne Li, SCNU, 2019/07/17

Central Limit Theorem (CLT)
• The CLT can be proved using characteristic functions (Fourier transforms).


• For finite n, the theorem is approximately valid to the extent that the 
fluctuation of the sum is not dominated by one (or few) terms.  
=> beware of measurement errors with non-Gaussian tails.


• Good example: velocity components vx of air molecules.


• OK example: total deflection due to multiple Coulomb scattering.  
(Rare large angle deflections give non-Gaussian tail.)


• Bad example: energy loss of charged particle traversing thin gas layer. 

!22
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Multivariate Gaussian distribution
• Multivariate Gaussian pdf for the vector 


•             are column vectors,                   are transpose (row) vectors


• For n=2 this is 


• where                                         is the correlation coefficient. 

!23

⃗x = (x1, …, xn)
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Multivariate Gaussian distribution 
Multivariate Gaussian pdf for the vector  

are column vectors,  are transpose (row) vectors,  

For n = 2 this is 

where ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient. 

⃗x , ⃗μ ⃗x T, ⃗μ T
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Multivariate Gaussian distribution 
Multivariate Gaussian pdf for the vector  

are column vectors,  are transpose (row) vectors,  

For n = 2 this is 

where ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient. G. Cowan  Statistical Data Analysis / Stat 1 54 

Multivariate Gaussian distribution 
Multivariate Gaussian pdf for the vector  

are column vectors,  are transpose (row) vectors,  

For n = 2 this is 

where ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient. ρ = cov [x1, x2]/(σ1σ2)
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Chi-square (χ2) distribution
• The chi-square pdf for the continuous random variable z (z>=0) is defined by


• For independent Gaussian xi, i = 1, …, n, means μi, variances σi2, 


• Example: goodness-of-fit test variable especially in conjunction with method of 
least squares.

!24
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Chi-square (χ2) distribution 
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by 

n = 1, 2, ... =  number of ‘degrees of 
                       freedom’ (dof) 

For independent Gaussian xi, i = 1, ..., n, means µi, variances σi2, 

follows χ2 pdf with n dof. 

Example:  goodness-of-fit test variable especially in conjunction 
with method of least squares. 
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n = 1, 2, ... =  number of ‘degrees of 
                       freedom’ (dof) 

For independent Gaussian xi, i = 1, ..., n, means µi, variances σi2, 

follows χ2 pdf with n dof. 
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Cauchy (Breit-Wigner) distribution
• The Breit-Wigner pdf for the continuous random variable x is defined by


• E[x] is not well defined,  
x0 = mode (most probable value) 
Γ = full width at half maximum


• Example: mass of resonance particles, e.g. 


• Γ = decay rate (inverse of mean lifetime)

!25
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Cauchy (Breit-Wigner) distribution 
The Breit-Wigner pdf for the continuous r.v. x is defined by 

(Γ = 2, x0 = 0 is the Cauchy pdf.) 

E[x] not well defined,   V[x] →∞. 

x0 = mode (most probable value) 

Γ = full width at half maximum 

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ... 

Γ = decay rate (inverse of mean lifetime) 

V[x] → ∞

Z0, ρ, K*, ϕ0, …
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Cauchy (Breit-Wigner) distribution 
The Breit-Wigner pdf for the continuous r.v. x is defined by 

(Γ = 2, x0 = 0 is the Cauchy pdf.) 

E[x] not well defined,   V[x] →∞. 

x0 = mode (most probable value) 

Γ = full width at half maximum 

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ... 

Γ = decay rate (inverse of mean lifetime) 
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Landau distribution
• For a charged particle with β = v/c traversing a layer of matter of thickness 

d, the energy loss Δ follows the Landau pdf:

!26
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Landau distribution 
For a charged particle with β = ν /c traversing a layer of matter 
of thickness d, the energy loss Δ follows the Landau pdf: 

L. Landau, J. Phys. USSR 8 (1944) 201; see also 
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253. 

+ � + � 

� + � + β

d 

Δ
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Landau distribution

!27
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Landau distribution  (2) 

Long ‘Landau tail’ 
     →  all moments ∞ 

Mode (most probable  
value) sensitive to β , 
     →  particle i.d. 
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Beta distribution

• Often used to respresent pdf 
of continuous non-zero-only 
random variable  between 
finite limits

!28
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Beta distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
between finite limits.  G. Cowan  Statistical Data Analysis / Stat 1 59 
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Beta distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
between finite limits.  
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Gamma distribution

• Often used to represent pdf 
of continuous r.v. nonzero only in 
[0,∞]. 


• Also e.g. sum of n exponential 
random variables or time until nth 
event in Poisson process ~ 
Gamma 

!29
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Gamma distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
in [0,∞]. 

Also e.g. sum of n exponential 
r.v.s or time until nth event 
in Poisson process ~ Gamma 
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Gamma distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
in [0,∞]. 

Also e.g. sum of n exponential 
r.v.s or time until nth event 
in Poisson process ~ Gamma 
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Student’s t distribution

• ν = number of degrees of 
freedom (not necessarily 
integer) 


• ν = 1 gives Cauchy,


• ν → ∞ gives Gaussian. 

!30

G. Cowan  Statistical Data Analysis / Stat 1 61 

Student's t distribution 

ν = number of degrees of freedom 
      (not necessarily integer) 

ν = 1 gives Cauchy, 

ν → ∞ gives Gaussian. 
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Student's t distribution 

ν = number of degrees of freedom 
      (not necessarily integer) 

ν = 1 gives Cauchy, 

ν → ∞ gives Gaussian. 
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Student’s t distribution
• If x ~ Gaussian with μ= 0, σ2 = 1, and 

z ~ χ2 with n degrees of freedom, then 
t = x / (z/n)1/2 follows Student's t with ν = n. 


• This arises in problems where one forms the ratio of a sample mean to the 
sample standard deviation of Gaussian random variables. 


• The Student's t provides a bell-shaped pdf with adjustable tails, ranging 
from those of a Gaussian, which fall off very 


• quickly, (ν → ∞, but in fact already very Gauss-like for ν = two dozen), to 
the very long-tailed Cauchy (ν = 1). 

!31
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Monte Carlo event generators
• Simple example: 


• Generate             and      


• Less simple: “event generators” for a variety of reactions:


• e.g. PYTHIA, POWHEG, HERWIG, ISAJET … 


• Output = “events”, and for each event we get a list of generated particles and 
their momentum vectors, types, etc..

!32

G. Cowan  Statistical Data Analysis / Stat 2 11 

Monte Carlo event generators 

Simple example:  e+e� → µ+µ�

Generate cosθ and φ: 

Less simple:  ‘event generators’ for a variety of reactions:  
  e+e- → µ+µ�, hadrons, ... 
  pp → hadrons, D-Y, SUSY,... 

e.g. PYTHIA, HERWIG, ISAJET... 

Output = ‘events’, i.e., for each event we get a list of 
generated particles and their momentum vectors, types, etc. 

cos θ ϕ
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Generate cosθ and φ: 

Less simple:  ‘event generators’ for a variety of reactions:  
  e+e- → µ+µ�, hadrons, ... 
  pp → hadrons, D-Y, SUSY,... 

e.g. PYTHIA, HERWIG, ISAJET... 

Output = ‘events’, i.e., for each event we get a list of 
generated particles and their momentum vectors, types, etc. 
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Example of a simulated event

!33
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A simulated event 

PYTHIA Monte Carlo 
pp → gluino-gluino 

G. Cowan  Statistical Data Analysis / Stat 2 
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Monte Carlo detector simulation
• Takes as input the particle list and momenta from generator.


• Simulates detector response:


• multiple Coulomb scattering (generate scattering angle),  particle decays 
(generate lifetime), ionization energy loss (generate Δ), electromagnetic, 
hadronic showers, production of signals, electronics response, ... 


• Output = simulated raw data -> input to reconstruction software: 
     track finding, fitting, shower clustering, etc. 


• Predict what you should see at “detector level” of events generated by the 
“event generator”. Compare with “real data”, e.g. can be used to estimate 
“efficiency” = [N events found] / [N events generated]


• Software:   GEANT4
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