

Hengne Li South China Normal University

Experimental Methods and Recent Progresses in Modern Physics





Lecture 2, Hengne Li, SCNU, v1, 2019/03/23



- What it is: a numerical technique for calculating probabilities and related quantities using sequences of random numbers.
- The usal steps:
  - (1) Generate sequence  $r_1, r_2, \ldots, r_m$  uniform in [0, 1].
  - (2) Use this to produce another sequence  $x_1, x_2, \ldots, x_n$ distributed according to some pdf f(x) in which we are interested (x can be a vector)
- MC generated values = "simulated data", "simulation" ==> use for testing statistical procedures

### The Monte Carlo method



 $\int_a^b f(x)\,dx$  . Hengne Li, SCNU, 2019/07/17

### Random number generators

- Goal: generate uniformly distributed values in [0, 1].
- Tools/algorithms to generate random numbers are called "random number generator"
- There are many algorithms to do that, such as multiplicative linear congruential generator (MLCG), Mersenne twister algorithm, etc.,
- They are implemented, and we can use directly:
  - C++ standard library(stdlib): <u>rand()</u> function can generate random numbers.
  - ROOT: TRandom, TRandom2, TRandom3, where TRandom3 gives much better results [F. James, Comp. Phys. Comm. 60 (1990) 111]

### The transformation method

- finding a suitable transformation x(r)
- Remind: previously, we learned given pdf f(x) and function a(x), ask the pdf of a: g(a).
- Here, is given pdf f(x) and g(r), ask the function x(r):

iSTEP 2019 Lectures

• Given  $r_1, r_2, \ldots, r_m$  uniform in [0, 1], find  $x_1, x_2, \ldots, x_n$  that follow f(x) by



F(x) = rHengne Li, SCNU, 2019/07/17

4

# Example of the transformation method • Exponential pdf: $f(xf(x;\xi) \stackrel{1}{=} \frac{1}{\xi}e^{-x/\xi} \quad (x \ge 0)$ $f(x;\xi) = \frac{1}{\xi}e^{-x/\xi} \quad (x \ge 0)$

Set 
$$\int_0^x \frac{1}{\xi} e^{-x'/\xi} \, dx' =$$

$$\rightarrow x(r) = -\xi \ln(1-r)$$

250

0

 One has to sol<sup>200</sup> to use this met|150 100 arbitrary f(x) 50



iSTEP 2019 Le

= r and  $\int_{0}^{x} \frac{1}{\xi} e^{-x'/\xi} dx' = r$ 

$$\left(x(r)\right) = -\xi \ln(1-r) \operatorname{WOI}(x(r)) = -\xi \ln r$$



#### The acceptance-rejection method

- (1) Generate a random number x, uniform in  $[x_{\min}, x_{\max}]$ , i.e.  $x = x_{\min} + r_1 (x_{\max} x_{\min})$ , r<sub>1</sub> is uniform in [0, 1].
- (2) Generate a 2nd independent random number u uniformly distributed between 0 and f<sub>max</sub>, i.e. u=r<sub>2</sub>f<sub>max</sub>
- (3) If u<f(x), then accept x, if not, reject x and repeat
- Practical for f(x) with complicated shapes.



#### Example with acceptance-rejection method

$$f(x) = \frac{3}{8} (1 \frac{f(x)}{x}) = \frac{3}{8} (1 + x)$$
$$(-1 \le x \le 1)$$

- Generate random number x in [-<sup>-</sup>
- Generate another random numb in [0, 3/4]
- If u <= f(x), take the x, and fill it ir the histogram. If not, drop the x.



#### Improving efficiency of the acceptance-rejection method

- slow.
- $\bullet$ 
  - (1) Generate random variable x according to C h(x) by other method, such as "transformation" method".
  - (2) Generate another random number u uniformly distributted between 0 and C h(x)
  - (3) If u < f(x), take accept x.

iSTEP 2019 Lectures

• The fraction of accepted points is equal to the fraction of the box's area under the curve. • For very peaked distributions, the fraction maybe very low, thus the algorithm may be

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms to f(x) more closely, where h(x) is a pdf from which we can generate random values and C is a constant:



# Moving to the practical programing training.

iSTEP 2019 Lectures

### Backup slides, Probability Density Functions.

### **Probability functions**

- We will now introduce a short list of popular probability functions and pdfs.
- For each functions, we show expectation value, variance, a plot and discuss of some properties and applications.
- See also chapter on probability from pdg.lbl.gov

iSTEP 2019 Lectures

- Consider N independent experiments (Bernoulli trails):
  - outcome of each is "success" or "failure"
  - probability of "success" on any given trail is p
- Define discrete random variable n = number of successes ( $0 \le n \le N$ )
- Probability of a specific outcome (in order), e.g. "s s f s f" is: pp(1-p)p(1-p)
- for each permutation.

#### **Binomial distribution**

$$) = p^{n}(1-p)^{N-n}$$

• But order is not important; there are N!/[n!(N-n)!] ways (permutations) to get n successes in N trails, total probability for n is sum of probabilities

• The binomial distribution is therefore

$$f(n; N, p) = \frac{N}{n!(N-n!)}$$
random variable parameters

• For the expectation value and variance, we find

$$E[n] = \sum_{n=0}^{N} nf(n; N, p) = Np$$
$$V[n] = E[n^{2}] - (E[n])^{2} = l$$

#### iSTEP 2019 Lectures

#### **Binomial distribution**

 $\frac{N!}{(l-n)!}p^n(1-p)^{N-n}$ 

Np(1-p)

Binomial distribution for different parameters values 



 $\bullet$ 

#### **Binomial distribution**

Example: observe N decays of W bosons, in which n is the number of  $W \to \mu v$ decays (number of "success"), and p is the branching ratio (probability of "success").

#### Multinomia

- Like binomial, but now m outcome  $\overrightarrow{p} = (p_1, ..., p_m), \mathbf{w}$
- For N trails, we want the probabili

• This is the multinomial distribution  $f(\overrightarrow{n}; N, \overrightarrow{p}) = \frac{N!}{n_1! n_2!}$ 

iSTEP 2019 Lectures

$$\vec{p} = (p_1, \dots, p_m), \quad \text{with } \sum_{i=1}^{n} p_i = 1$$
  
with  $\sum_{i=1}^{m} p_i = 1$   
ity to obtain:  $n_1$  of outcome 1,  
 $n_2$  of outcome 2,  
 $\vdots$   
 $n_m$  of outcome m.  
the for  $\vec{n} = (n_1, \dots, n_m)$   
 $\frac{n_1!}{\dots n_m!} p_1^{n_1} p_2^{n_2} \cdots p_m^{n_m!} \vec{p} = \frac{N!}{n_1! n_2! \cdots n_m!} p_1$ 





#### Multinomial distribution

- Now consider outcome i as "success", all others are "failure".  $E[n_i] = Np_i, \quad V[n_i] = Np_i(1-p_i)$  for all *i* 
  - Note, i (success) and NOT-i (failure), actually form a "binomial" structure
- One can also find the covariance to be  $V_{ij} = N p_i \left( \delta_{ij} p_j \right)$
- Example:  $\vec{n} = (n_1, ..., n_m)$  represents a histogram with m bins, N total entries, all entries independent.

#### **Poisson distribution**

 Consider binomial n in the limit  $N \to \infty, \quad p \to 0,$ 

- n follows the Poisson distribution:  $f(n;\nu) = \frac{\nu^n}{n!} e^{-\nu} \quad (n \ge 0)_{E[n] = \nu},$  $E[n] = \nu, \quad V[n] = \nu$
- Example: number of scattering events n with cross section  $\sigma$  found for a fixed integrated luminosity, with  $\nu = \sigma | Ldt$

 $N \to \infty, \qquad p \to 0, \qquad E[n] = Np \to \nu.$ 

$$E[n] = Np \to \iota$$

$$e^{-\nu}$$
  $(n \ge 0)$ 

$$V[n] = \nu .$$



#### Uniform distribution

• Consider a continuous random vari $f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha} < \alpha \leq x \leq \beta \\ 0 & \text{otherwise} \end{cases}$ Uniform pdf is

$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha \le x \le \beta \end{cases} \begin{cases} \widehat{\beta} & E \\ 0 & \text{otherwise} \end{cases} \begin{cases} \widehat{\beta} & V \\ V & V \end{cases}$$

•  $NE[x] = \frac{1}{2}(\alpha + \beta)d\sigma[m] variable + distribution F(x), y = F(x) is unifor$  $<math>V[x] = \frac{1}{12}(\beta - \alpha)^2 [x] + E_{\gamma 1} + Unifc$ 

$$E_{\min} = \frac{1}{2} E_{\pi} (1 - \beta), \quad E_{\max} =$$

 $E_{\text{min}} = \frac{1}{-}E_{\pi}(1-\beta)$   $E_{\text{max}} = \frac{1}{-}E_{\pi}(1+\beta)$ 



 $\beta = v/c$ 

### **Exponential distribution**

- $\begin{array}{c} \textbf{0.4} \\ \textbf{E[x]} \\ \textbf{0.2} \end{array}$  $E[x] = E[x] = \xi$  $V[x] = \hat{V[x]} = \xi^2$ V[x]
- Example: proper decay time t of an unstable particle  $f(t; \tau) = \frac{1}{\tau} e^{-t/\tau}$  ( $\tau$  = mean lifetime)  $\tau$

iSTEP 2019 Lectures



$$\int f(t) = f(t)$$
  
$$f(t - t_0 | t \ge t_0) = f(t) \quad f(t - t_0 | t \ge t_0) = f(t)$$

Hengne Li, SCNU, 2019/07/17

J\

$$f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$

 $E[x] = \mu$  (N.B. often  $\mu$ ,  $\sigma^2$  denote mean, variance of any  $V[x] = \sigma^2$  r.v., not only Gaussian.)

• Special case:

 $V[x] = \sigma^{--} \mathbf{S}$  $\mu = 0, \, \sigma^2 = 1$ 

iSTEP 2019 Lectures

#### Gaussian distribution

• The Gaussian (normal) pdf for a continuous random variable x is defined by





#### Gaussian pdf and the Central Limit Theorem

- Central Limit Theorem:
- arbitrary pdfs, consider the sum

• In the limit  $n \to \infty$ , y is a Gaussian random variable with

$$E[y] = \sum_{i=1}^{n} \mu_i \qquad V[y] = \sum_{i=1}^{n} \sigma_i^2 \quad V[y] = \sum_{i=1}^{n} \sigma_i^2$$

measured values can be treated as Gaussian random variables.

iSTEP 2019 Lectures

 The Gaussian pdf is very useful because almost any random variable that is a sum of a large number of small contributions follows it. This follows from the

• For n independent random variables  $x_i$  with finite variances  $\sigma_i^2$ , otherwise  $=\sum_{i=1}^{n} x_{i}$ i=1

Measurement errors are often the sum of many contributions, so frequently

# Central Limit Theorem (CLT)

- The CLT can be proved using characteristic functions (Fourier transforms).
- For finite n, the theorem is approximately valid to the extent that the fluctuation of the sum is not dominated by one (or few) terms.
   => beware of measurement errors with non-Gaussian tails.
- Good example: velocity components v<sub>x</sub> of air molecules.
- OK example: total deflection due to multiple Coulomb scattering. (Rare large angle deflections give non-Gaussian tail.)
- Bad example: energy loss of charged particle traversing thin gas layer.

#### Multivariate Gaussian $d_{\vec{x}} = (x_1, \dots, x_n)^{t}$ ion

- Multivariat  $\cap \bigcap_{i=1}^{\infty} f(\vec{x}; \vec{\mu}, V) = \frac{1}{(2\pi)^2}$  $f(\vec{x};\vec{\mu},V) = \frac{1}{(2\pi)^{n/2}} V^{1/2} V^{1/2}$ •  $\vec{x}, \vec{\mu} \in \vec{x}, \vec{\mu}$  double of the set of the s  $E E[x_i] = \mu_i, \quad \text{COV}[x_i, x_j]$

• For n=2 this is 
$$f(x_1, x_2; ; \mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$f(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
$$(x_1, x_2; ; \mu + \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\frac{1}{\pi^{n/2}|V|^{1/2}} \exp\left[-\frac{1}{2}(\vec{x}-\vec{\mu})^T V^{-1}(\vec{x}-\vec{\mu})\right]$$
  
$$\exp\left[-\frac{1}{2}(\vec{x}-\vec{\mu})^T V^{-1}(\vec{x}-\vec{\mu})\right]$$

$$= V_{ij}$$
.

$$n = 1, 2, \dots = \text{number of 'degrees of}$$
$$E[z] = n^{n-1} \widetilde{V}[z] \stackrel{i}{=} 2n .$$
$$E[z] = n, \quad V[z] = 2n .$$

• For independent Gaussian x<sub>i</sub>,  $i \stackrel{E[z]}{=} n, \quad V[z] = 2n$ .

$$z = z = \sum_{i=1}^{n} \frac{(x_i - \mu_i)^2}{\sigma_i^2}$$
 fol

least squares.

iSTEP 2019 Lectures



### Cauchy (Breit-Wigner) distribution

- E[x] is not well defined,  $V[x] \to \infty^{\circ}$  $x_0 = mode$  (most probable value)  $\Gamma$  = full width at half maximum
- Example: mass of resonance particles, e.g.  $Z^0, \rho, K^*, \phi^0, \dots$
- $\Gamma = \text{decay rate}$  (inverse of mean lifetime)





### Landau distribution

d, the energy loss  $\Delta$  follows the Landau pdf:

$$f(\Delta;\beta) = \frac{1}{\xi}\phi(\lambda) ,$$
  

$$\phi(\lambda) = \frac{1}{\pi} \int_0^\infty \exp(-u \ln u)$$
  

$$\lambda = \frac{1}{\xi} \left[ \Delta - \xi \left( \ln \frac{\xi}{\epsilon'} + 1 - \frac{2\pi N_{\rm A} e^4 z^2 \rho \sum Z}{m_{\rm e} c^2 \sum A} \frac{d}{\beta^2} \right) \right]$$

#### iSTEP 2019 Lectures

• For a charged particle with  $\beta = v/c$  traversing a layer of matter of thickness



#### Landau distribution

Long 'Landau tail'  $\rightarrow$  all moments  $\infty$ 

Mode (most probable value) sensitive to  $\beta$ ,  $\rightarrow$  particle i.d.

#### iSTEP 2019 Lectures



Hengne Li, SCNU, 2019/07/17

27

$$f(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1 - x)^{\beta-1} x^{\beta-1} (1 - x)^{\beta-1} x^{\alpha-1} (1 - x)^{\beta-1} x^{\beta-1} (1 - x)^{\beta-1} (1 - x)^{\beta-1} x^{\beta-1} (1 - x)^{\beta-1} (1 - x)^{\beta-1} x^{\beta-1} (1 - x)^{\beta-1} x^{\beta-1} (1 - x)^{\beta-1} (1 - x)^{\beta-1}$$

Often used to respreser 0.5
 of continuous non-zero 00
 random variable betwecon
 finite limits

#### $c^{\alpha-1}(1-x)^{\beta-1}$ ion



Hengne Li, SCNU, 2019/07/17

28

0.2

0

0

||

$$f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} e^{-x/\beta}$$

[0,∞].

 Also e.g. sum of n exponentia <sup>0.1</sup> random variables or time until event in Poisson process ~ <sup>0</sup>
 Gamma

iSTEP 2019 Lectures

## $x^{\alpha-1}e^{-x/\beta}$ but ion

 $|\beta|$ 



$$\mathbf{S}_{f}(x;\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma(\nu/2)}}{\sqrt{\nu\pi}\Gamma(\nu/2)}$$

$$f(x;\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma(\nu/2)}}{\sqrt{\nu\pi}\Gamma(\nu/2)}\left(1 + \frac{x^{2}}{\nu}\right)^{-\left(\frac{\nu+1}{2}\right)}}{\nu} \int_{-\left(\frac{\nu+1}{2}\right)}^{-\left(\frac{\nu+1}{2}\right)}}{\sqrt{\nu\pi}\Gamma(\nu/2)} \int_{-\left(\frac{\nu+1}{2}\right)}^{-\left(\frac{\nu+1}{2}\right)}}{\nu} \int_{-\left(\frac{\nu+1}{2}\right)}}{\nu} \int_{-\left(\frac{\nu+1}{2}\right)}}{\nu} \int_{-\left(\frac{\nu+1}{2}\right)}^{-\left(\frac{\nu+1}{2}\right)}}{\nu} \int_{-\left(\frac{\nu+1}{2}\right)}}{\nu} \int_{-\left(\frac{$$

iSTEP 2019 Lectures



#### Student's t distribution

- If x ~ Gaussian with  $\mu = 0$ ,  $\sigma^2 = 1$ , and  $z \sim \chi^2$  with n degrees of freedom, then  $t = x / (z/n)^{1/2}$  follows Student's t with v = n.
- This arises in problems where one forms the ratio of a sample mean to the sample standard deviation of Gaussian random variables.
- The Student's t provides a bell-shaped pdf with adjustable tails, ranging from those of a Gaussian, which fall off very
- quickly,  $(v \rightarrow \infty)$ , but in fact already very Gauss-like for v = two dozen), to the very long-tailed Cauchy (v = 1).

### Monte Carlo eve

- Simple example:  $e^+e^- \rightarrow \mu^+\mu^-$
- Generate  $\cos\theta$  and  $\phi$   $f(\cos\theta; A_{\text{FB}}) \propto (1 + \frac{8}{3}A_{\text{FB}}\cos\theta + \cos^2\theta)$ ,
  - $f(g(\phi) = \frac{1}{2\pi} \quad (0 \le \phi \le 2\pi)$
- Let  $g(f(\cos\theta; A_{\text{FB}}) \propto (1 + \frac{8}{3}A_{\text{FB}}\cos\theta + \cos^2\theta),$  $g(\phi) = \frac{1}{2\pi} \quad (0 \le \phi \le 2\pi)$
- e.g. PYTHIA, POWHEG, HERWIG, ISAJET ...
- Output = "events", and for each even their momentum vectors, types, etc..

iSTEP 2019 Lectures



Output = "events", and for each event we get a list of generated particles and

#### Example of a simulated event

| $\times$ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |         |                        |                            |                 |           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|------------------------|----------------------------|-----------------|-----------|--|
| Event listing (summary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |         | A simulated event      |                            |                 |           |  |
| I particle/jet KS KF orig p_x p_y p_z E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m                        |         |                        |                            |                 |           |  |
| 1 !p+! 21 2212 0 0.000 0.000 7000.000 7000.<br>2 lp+! 21 2212 0 0.000 0.000-7000.000 7000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000 0,938                |         |                        |                            |                 |           |  |
| Z (p) 21 2212 0 0,000 0,000 1000,000 1000,<br>Z (p) 21 21 1 0.863 -0.323 1739 862 1739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 862 0.000                |         |                        | •                          |                 |           |  |
| 4 !ubar! 21 -2 2 -0.621 -0.163 -777.415 777.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 415 0,000                |         |                        |                            |                 |           |  |
| 5 !g! 21 21 3 -2,427 5,486 1487,857 1487.<br>6 lol 21 21 4 -62,910 63,357 -463,274 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Χ~                       |         |                        |                            |                 | - D ×     |  |
| 7 !~9! 21 1000021 0 314,363 544,843 498,897 979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 397 pi+                  | 1 211   | 209 0,006              | 0.398 -308.296             | 308,297         | 0,140     |  |
| 8 !"g! 21 1000021 0 -379,700 -476,000 525,686 980.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 398 gamma                | 1 22    | 211 0,407              | 0,087-1695,458 :           | 1695,458        | 0,000     |  |
| 9 !"ch1_1-! 21-1000024 7 130.098 112.247 129.860 263.<br>10 Isbarl 21 -3 7 259 400 187 468 83 100 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400 (pi0) 1              | 1 22    | 212 0.021              | 0.122 -103.709             | 103.709         | 0.135     |  |
| 11 lc! 21 4 7 -79.403 242.409 283.026 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 401 (pi0) 1              | 11 111  | 212 0,084              | -0,068 -94,276             | 94,276          | 0,135     |  |
| 12 !"chi_20! 21 1000023 8 -326,241 -80,971 113,712 385.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 402 (pi0) 1              | 11 111  | 212 0,267              | -0,052 -144,673            | 144.674         | 0,135     |  |
| 13 !b! 21 5 8 -51.841 -294.077 389.853 491.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 403 gamma                | 1 22    | 215 -1,581             | 2,473 3,306                | 4,421           | 0.000     |  |
| 14 !bban! 21 -5 8 -0,597 -99,577 21,299 101.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 404 gamma<br>405 pi-     | 1 22    | 215 -1,494             | 2,143 5,051<br>0 779 4 015 | 4.015           | 0.000     |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 405 pi+                  | 1 211   | 216 -0.024             | 0.293 0.486                | 0.585           | 0.140     |  |
| $17 \  cbar  21 -4 9 \ 20.839 \ -7.250 \ -5.938 \ 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 407 K+                   | 1 321   | 218 4.382              | -1.412 -1.799              | 4,968           | 0.494     |  |
| 18 !"chi_10! 21 1000022 12 -136,266 -72,961 53,246 181.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 408 pi-                  | 1 -211  | 218 1,183              | -0,894 -0,176              | 1,500           | 0,140     |  |
| 19 !nu_mu! 21 14 12 -78,263 -24,757 21,719 84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 409 (pi0) 1              | 11 111  | 218 0,955              | -0,459 -0,590              | 1,221           | 0,135     |  |
| 20 !nu_mubar! 21 -14 12 -107.801 16.901 38.226 115.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 410 (pi0) 1              | 11 111  | 218 2,349              | -1,105 -1,181              | 2,855           | 0,135     |  |
| 21  or  21  or | 411 (KDarv) 1<br>412 pi- | 1 -011  | 219 1,441<br>219 2,222 | -0,247 -0,472              | 2 225           | 0,498     |  |
| 21 gamma $1$ $22$ $4$ $2,656$ $1,557$ $0,125$ $2.22$ ("chi 1-) 11-1000024 9 129 643 112 440 129 820 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 412 p1<br>413 K+         | 1 321   | 220 1.380              | -0.652 -0.361              | 1.644           | 0.494     |  |
| 23 ("chi 20) 11 1000023 12 -322.330 -80.817 113.191 382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 414 (pi0) 1              | 11 111  | 220 1.078              | -0.265 0.175               | 1.132           | 0.135     |  |
| 24 ~chi_10 1 1000022 15 97,944 77,819 80,917 169.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 415 (K_SO) 1             | 11 310  | 222 1,841              | 0,111 0,894                | 2,109           | 0,498     |  |
| 25 "chi_10 1 1000022 18 -136,266 -72,961 53,246 181.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 416 K+                   | 1 321   | 223 0,307              | 0,107 0,252                | 0,642           | 0,494     |  |
| 26 nu_mu 1 14 19 -78,263 -24,757 21,719 84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 417 pi-                  | 1 -211  | 223 0,266              | 0.316 -0.201               | 0,480           | 0.140     |  |
| 27 nu_mubar 1 -14 20 -107,801 16,901 38,226 115.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 418 nbar0                | 1 -2112 | 226 1,535              | 1.641 2.078                | 3,111<br>1 000  | 0.940     |  |
| 28 (Delta++) 11 2224 2 0.222 0.012-2/34.28/ 2/34.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 419 (p10) 1<br>420 pit   | 1 211   | 226 0,633<br>227 0.217 | 1,046 1,511                | 1,908           | 0,135     |  |
| <u>a</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 421 (pi0) 1              | 11 111  | 227 1.207              | 2.336 2.767                | 3,820           | 0.135     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 422 n0                   | 1 2112  | 228 3.475              | 5.324 5.702                | 8,592           | 0.940     |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 423 pi-                  | 1 -211  | 228 1,856              | 2,606 2,808                | 4,259           | 0,140     |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 424 gamma                | 1 22    | 229 -0,012             | 0,247 0,421                | 0,489           | 0.000     |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 425 gamma                | 1 22    | 229 0.025              | 0.034 0.009                | 0.043           | 0.000     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 425 p1+                  | 1 211   | 250 2,718              | 5,229 5,403                | 8,703<br>10.901 | 0,140     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 427 (p10)                | 1 -211  | 230 4,103              | 1.233 1.945                | 2 372           | 0.140 *** |  |
| <b>PYIHIA</b> Monte Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 429 (pi0) 1              | 11 111  | 231 0.645              | 1.141 0.922                | 1.608           | 0.135     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 430 gamma                | 1 22    | 232 -0,383             | 1,169 1,208                | 1,724           | 0,000     |  |
| $pp \rightarrow gluino-gluino$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 431 gamma                | 1 22    | 232 -0,201             | 0,070 0,060                | 0,221           | 0,000     |  |

iSTEP 2019 Lectures

### Monte Carlo detector simulation

- Takes as input the particle list and momenta from generator.
- Simulates detector response:
  - hadronic showers, production of signals, electronics response, ...
- Output = simulated raw data -> input to reconstruction software: track finding, fitting, shower clustering, etc.
- "efficiency" = [N events found] / [N events generated]
- Software: GEANT4

• multiple Coulomb scattering (generate scattering angle), particle decays (generate lifetime), ionization energy loss (generate  $\Delta$ ), electromagnetic,

 Predict what you should see at "detector level" of events generated by the "event generator". Compare with "real data", e.g. can be used to estimate