
GPU applications within
HEP

Liang Sun
Wuhan University

2019-07-19

The 6th International Summer School on TeV Experimental Physics (iSTEP), Guangzhou

2

Outline
● Basic concepts

– GPU, CUDA, Thrust

● Introduction on Dalitz-Plot Analysis
● Overview of HEP toolkits for amplitude analyses
● GooFit introduction
● Hydra introduction
● Summary

3

CPUs and GPUs
● The CPU (central processing unit) carries out all the

arithmetic and computing functions of a computer.
Principal components of a CPU: arithmetic logic unit
(ALU),registers and a control unit

● The GPU (graphics processing unit) is specialized
processor designed to rapidly manipulate and alter
memory to accelerate the creation of images in a frame
buffer. Modern GPUs have a highly parallel structure and
are more efficient than general-purpose CPUs for
algorithms where the processing of large blocks of data is
done in parallel

4

CPUs and GPUs

5

Concurrency
● The ability to execute or solve different parts of a program, an

algorithm or a problem in out-of-order or in partial order, without
affecting the final outcome

● Concurrent routines can be executed in parallel
● Significant improvement in the overall performance of the

execution in multi-processor, multi-core and multi-thread systems
● Design of concurrent programs and algorithms requires reliable

techniques for coordinating instruction execution, data exchange,
memory allocation and execution scheduling to minimize
response time and maximize throughput

● Issues: race conditions, deadlocks, resource starvation etc....

6

Motivation for massively parallel
platforms in HEP

● A large fraction of the software used in HEP is legacy. It
consists of libraries of single threaded, Fortran and C++03
mono-platform routines

● HEP experiments keep collecting samples with
unprecedented large statistics.

● Data analyses get more and more complex. Not rarely, a
calculation spend days to reach a result, which often needs
re-tuning

● Processors will not increase clock frequency any more. The
current road-map to increase overall performance is to deploy
concurrency

7

Geforce GTX 1080 Ti

GTX TITAN Z

8

What is CUDA?
● CUDA Architecture

– Expose GPU parallelism for general-purpose computing
– Retain performance

● CUDA C/C++
– Based on industry-standard C/C++
– Small set of extensions to enable heterogeneous

programming
– Straightforward APIs to manage devices, memory etc.

Heterogeneous Computing

 Terminology:
 Host The CPU and its memory (host memory)
 Device The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

Heterogeneous Computing
#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex -
RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex +
BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out; // host copies of a, b, c
int *d_in, *d_out; // device copies of a, b, c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex -
RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex +
BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out; // host copies of a, b, c
int *d_in, *d_out; // device copies of a, b, c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

serial code

parallel code

serial code

parallel fn

© NVIDIA 2013

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

PCI Bus

© NVIDIA 2013

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

© NVIDIA 2013

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

© NVIDIA 2013

PCI Bus

14

What is Thrust?

• High-Level Parallel Algorithms Library

• Parallel Analog of the C++ Standard Template
Library (STL)

• Performance-Portable Abstraction Layer

• Productive way to program CUDA

Example
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <cstdlib>

int main(void)
{
 // generate 32M random numbers on the host
 thrust::host_vector<int> h_vec(32 << 20);
 thrust::generate(h_vec.begin(), h_vec.end(), rand);

 // transfer data to the device
 thrust::device_vector<int> d_vec = h_vec;

 // sort data on the device
 thrust::sort(d_vec.begin(), d_vec.end());

 // transfer data back to host
 thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());

 return 0;
}

Another example

• Containers
host_vector
device_vector

• Memory Management
– Allocation

– Transfers

• Algorithm Selection
– Location is implicit

// allocate host vector with two elements
thrust::host_vector<int> h_vec(2);

// copy host data to device memory
thrust::device_vector<int> d_vec = h_vec;

// write device values from the host
d_vec[0] = 27;
d_vec[1] = 13;

// read device values from the host
int sum = d_vec[0] + d_vec[1];

// invoke algorithm on device
thrust::sort(d_vec.begin(), d_vec.end());

// memory automatically released

Easy to Use

• Distributed with CUDA Toolkit

• Header-only library

• Architecture agnostic

• Just compile and run!

$ nvcc -O2 -arch=sm_35 program.cu -o program

Portability

• Support for CUDA, TBB and OpenMP
– Just recompile!

GeForce GTX 280

$ time ./monte_carlo
pi is approximately 3.14159

real 0m6.190s
user 0m6.052s
sys 0m0.116s

NVIDA GeForce GTX 580 Core2 Quad Q6600

$ time ./monte_carlo
pi is approximately 3.14159

real 1m26.217s
user 11m28.383s
sys 0m0.020s

Intel Core i7 2600K

nvcc -DTHRUST_DEVICE_SYSTEM=THRUST_HOST_SYSTEM_OMP

19

What is Dalitz-plot?

● Visual representation of the phase-
space of a three-body decay: 0 → 123
– Two independent Lorentz invariants:

● Named after its inventor, Richard
Dalitz (1925 – 2006)
– “On the analysis of tau-meson data and

the nature of the tau-meson.”
● R.H. Dalitz, Phil. Mag. 44 (1953) 1068
● (historical reminder: tau meson = charged

kaon)

20

What is Dalitz-plot?

● Visual representation of the phase-
space of a three-body decay: 0 → 123
– Two independent Lorentz invariants:

● Named after its inventor, Richard
Dalitz (1925 – 2006)
– “On the analysis of tau-meson data and

the nature of the tau-meson.”
● R.H. Dalitz, Phil. Mag. 44 (1953) 1068
● (historical reminder: tau meson = charged

kaon)

21

Dalitz plots as visualizer of kinematics

M2(K
s
π+)

M
2 (

K
sπ

-)

22

Dalitz-plot analysis
● Amplitude analysis to extract directly information related to the

phase at each Dalitz plot position
● Most commonly performed in the “isobar model”

– Coherent sum of interfering quasi-two-body
resonances: D →C R (→AB):

– Each described by Breit-Wigner (or similar) lineshapes, spin terms,
etc.

– Unbinned fit to determine lineshape parameters: inherent model
dependence

● Alternative approaches aiming to avoid model dependence
usually involve binning
– Partial wave analysis

23

Overview of Amplitude
analysis toolkits

24

Overview of Amplitude
analysis toolkits

Table on features of different tools (source)
Disclaimer: not a complete list, GPU based fitters used
in BESIII collaborator are not listed

https://indico.cern.ch/event/791230/

25

GooFit (v1) introduction
● GooFit: an open-source project originally developed by R. Andreassen

and funded by NSF

– FitManager object as the interface between MINUIT and a GPU
which allows a PDF (GooPDF object) to be evaluated in parallel

Architecture: Program flow:

"Implementation of a Thread-Parallel, GPU-Friendly Function Evaluation Library,"
R. Andreassen et al., IEEE Access, v.2, 2014.

https://github.com/GooFit/GooFit

26

Analogy with RooFit
● Code structure similar to RooFit framework, the

overall fit set-up and running are familiar for
RooFit users

27

GooFit PDFs
● Simple PDFs: ARGUS, correlated Gaussian, Crystal Ball, exponential, Gaussian,

Johnson SU, polynomial, relativistic Breit-Wigner, scaled Gaussian, smoothed
histogram, step function, Voigtian

● Composites:

● Specialized mixing PDFs: Coherent amplitude sum, incoherent sum, truth
resolution, three-Gaussian resolution, Dalitz-plot region veto, threshold damping
function

– TddpPdf (DalitzPlotPdf) as the main engine for time-dependent (-integrated) Dalitz-plot
(DP) fits, with a list of ResonancePdf objects as input to describe different
(non-)resonance amplitudes

You can write your
own PDFs based on
the example PDF code
with relative ease

28

Gaussian PDF as an example

Side note: ‘fptype’ is just a typedef for double - this allows quick switching
between double and float precision

29

Time-dependent amplitude analysis
of D0 → πππ0

● First published physics
analysis using GooFit

● Measurement on D0 mixing
parameters x and y using an
unbinned maximum
likelihood fit

● A total of 138k data events
from BABAR experiment

● Final results:

Signal PDF (TddpPdf): Time-
dependent mixing function
involving coherent sums of Breit-
Wigner amplitudes (ResonancePdf)

PRD 93, 112014 (2016)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.112014

30

Fit projections

Data DP Fit pulls

The data fit takes ~1 min to complete with Nvidia Tesla
K40c, a speed-up of ~300 over the original CPU version

PRD 93, 112014 (2016)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.112014

31

32

Recent GooFit developments

33

How GooFit v2 works?

34

Code examples

35

36

GooFit (python) documentation

37

What is Hydra?

https://github.com/MultithreadCorner/Hydra

38

Hydra features

39

Hydra example I: Gaussian + Argus

40

Hydra example I: Gaussian + Argus

41

Hydra example I: Gaussian + Argus

42

Hydra example II: D+→K-π+π+ amplitudes

43

Hydra example II: D+→K-π+π+ amplitudes

44

Hydra example II: D+→K-π+π+ amplitudes
Now the fit model:

45

Hydra example II: D+→K-π+π+ amplitudes

46

Hydra example II: D+→K-π+π+ amplitudes
Fit projections:

47

Hydra example II: D+→K-π+π+ amplitudes
Performance: CPU with CUDA

48

Hydra example II: D+→K-π+π+ amplitudes
Performance: CPU with OpenMP

49

Hydra example II: D+→K-π+π+ amplitudes
Performance: CPU with TBB

50

Summary & resources
● GooFit and Hydra are two example tools which could make your fitting

hundreds of times faster
● A number of physics analyses have benefited from GPU acceleration
● Growing interests in GPUs within HEP community
● Useful resources:

– CUDA
● https://docs.nvidia.com/cuda/index.html

– Thrust:
● https://docs.nvidia.com/cuda/thrust/index.html

– GooFit:
● https://github.com/GooFit/GooFit

– Hydra:
● https://github.com/MultithreadCorner/Hydra

https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/thrust/index.html
https://github.com/GooFit/GooFit
https://github.com/MultithreadCorner/Hydra

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Heterogeneous Computing_clipboard0
	Heterogeneous Computing
	Simple Processing Flow_clipboard1
	Simple Processing Flow_clipboard2
	Simple Processing Flow
	Slide 14
	Example
	Slide 16
	Easy to Use
	Portability
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

