超标准模型物理 BSM

ALC AND A DECIMAL DECI

Xuai Zhuang (庄脀爱) <u>xuai.zhuang@cern.ch</u> IHEP, Beijing, China Jul. 15-21, Guangzhou, iSTEP2019 华南师范大学量子物质研究院

中國科學院為能物昭納完所 Institute of High Energy Physics Chinese Academy of Sciences

Higgs boson observed, SM is complete.
SM fits the experimental data very well
big success in EW scale

The Nobel Prize in Physics 2013 François Englert, Peter Higgs

P. Higgs at CMS

Very happy faces after the announcement of the discovery on 4th July 2012 at CERN and at ICHEP Melbourne

Announced on 8th October and celebrated on 10th December 2013:

2013 NOBEL PRIZE IN PHYSICS François Englert Peter W. Higgs

"for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

The Nobel Foundation, Photo: Lovisa Engbloi

Need a more fundamental theory of which SM is only a low-energy approximation → New Physics

While has problem in Planck scale:

- Naturalness and "hierarchy" problem
- Unification of gauge coupling
- Dark Matter

Unfortunately, there is a problem with the Higgs!

New Physics beyond the SM

Heb

- 世界最大,能量最高的加速器,进行最前沿的粒子物理研究
- 质心系能量14TeV (Tevatron的7倍),可以发现5TeV以下的较重的新粒子 15

SEN

• 积分亮度10³⁴ cm⁻² s⁻¹ (Tevatron 的100倍),可以发现微小衰变截面的稀有事例

CERN's particle accelerator chain

Collisions at LHC

ATLAS and CMS: two multi-purpose detectors @LHC

A Toroidal LHC ApparatuS

- 42m×22m, 7000 ton
- Solenoid + Toroidal magnet (2T)
- Fine granularity liquid Ar/Tile calorimeters

Large Hadron Collider (LHC):

Proton-Proton synchrotron
World's highest and largest collider

Compact Muon Spectrometer

ATLAS

- 21m×15m, 125000 ton
- All silicon trackers, 4T

solenoid magnet

- PbWO4+Tile calorimeters

ATLAS and CMS

Chinese muon chambers installed in the ATLAS detector

The joy in the ATLAS Control Room when the first LHC beam collided on November 23rd, 2009....

A well-deserved toast to all who have built such a marvelous machine, and to all who operate it so superbly (first 7 TeV collisions on 30th March 2010)

New Physics beyond the SM

What is SUSY? How SUSY do help?

P. Higgs at CMS

OUR WORLD...

OUR WORLD...

NEW WORLD?

OUR WORLD...

NEW WORLD?

Q |boson> = |fermion> Q |fermion> = |boson>

Spin differ by 1/2 ²⁹

OUR WORLD...

NEW WORLD?

Establishes a symmetry between fermions (matter) and bosons (forces)

Bosons Fermions

Q |boson> = |fermion> Q |fermion> = |boson>

Spin differ by 1/2 ³⁰

Establishes a symmetry between fermions (matter) and bosons (forces)

Bosons Fermions

Q |boson> = |fermion> Q |fermion> = |boson>

Spin differ by 1/2 ³¹

 Establishes a symmetry between fermions (matter) and bosons (forces)
Motivation:

- Unification (fermions-bosons, matter-forces)
- Solves some deep problems of the SM
- Provide Dark Matter candidate

0

Q |boson> = |fermion> Q |fermion> = |boson>

Spin differ by 1/2 ³²

- Solves some deep problems of the SM
- Provide Dark Matter candidate

0

Spin differ by 1/2 ³³

Q |fermion> = |boson>

Solve hierarchy problem without "fine tuning"

- Fermion and boson loops contribute with different signs to the Higgs radiative corrections
- Supersymmetric partner contributions to Higgs mass cancel SM contributions

□ Unification of gauge couplings

- New particle content changes running of couplings
- requires SUSY masses below few TeV

Provide Dark Matter candidate

天文学家发现宇宙中很 大一部分是我们看不见 的 暗物质(明物质只 占4.6%)

'Supersymmetric' particles ?

Provide perfect dark mater
candidate - WIMP(lightest neutralino)
in R-parity conserving models)
stable
electrically neutron
same density as DM

0.094 < Ω_{CDM}h² < 0.136 (95% CL)

How to hunt SUSY?

(TeV-scale) Supersymmetry (SUSY)

How do we start? - SUSY Signature

How do we search for SUSY?

How do we search for SUSY?

- SUSY search strategy: search for deviation from SM from the tails
- SUSY sensitive variables: Try to establish excess of events in some sensitive kinematic distribution
- SM background: the discovery of new physics can only be claimed when SM backgrounds are understood well or under control
 - SM bgs understood very well ③
 - No hints for new physics $\ensuremath{\mathfrak{S}}$
 - Slightly overshoot in WW cross section, but consistent with NNLO xsec.

SUSY Sensitive Variables

- **E**_T^{miss} from escaping LSP, to suppress bg from mismeasured jets and oth. SM BG
- Related to the sparticle mass scale, like effective mass (**M**_{eff})

$$M_{\text{eff}} \equiv \sum_{i=1}^{N_{\text{jets}}} p_{\text{T}}^{\text{jet},i} + \sum_{j=1}^{N_{\text{lep}}} p_{\text{T}}^{\text{lep},j} + E_{\text{T}}^{\text{miss}}$$

mT, mT2 (stransverse mass): suppress BG with Ws

$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$

Many others ...

How do we search for SUSY? -Analysis Procedure (similar for exotics)

- 1. Be aware of SUSY signature, design signal grid
- Pre-selection: select good objects (e, mu, tau, jet, ...), apply trigger depending on analysis, remove bad events (bad runs, not from pp collisions, in transition region ...)

3. SR definition and optimization

- Define signal regions based on decay topologies occurring in generic models
- Set final cut on discriminating variables (e.g. Meff) to optimize sensitivity to reference models with appropriate mass scale
- 4. SM Background estimations (data-driven + MC)
- 5. Compare SM predictions with data
- 6. If no excess, interpret results in different SUSY models

1. Be aware of SUSY signature, design signal grid

2 tau + large E_T^{miss}

2: Pre-selection Reconstructed Objects

- Photons: no track but energy in el-m (and not in the hadronic) calorimeter
- Electrons: track and energy in el-m (and not in the hadronic) calorimeter
- Muons: track in inner tracker and muon chamber
- Jets: cluster in hadronic calorimeter

MET: Missing Transverse Energy

- At the LHC an unknown proportion of the energy of the colliding protons escapes down the beam-pipe
- Invisible particles (neutrinos, neutralinos?) are created their momentum can be constrained in the plane transverse to the beam direction

 $E_T^{ ext{miss}} = -\sum p_T(i)$

Triggering on Physics

40MHz

~100kHz

~1kHz

Apply trigger depending on analysis
 Only pick up what we are interested events
 2tau or 2tau+MissingET trigger used here

Final states: 2 tau + large E_T^{miss}

ATLAS-CONF-2019-018 3: SR definition and optimization

Final states: 2 tau + large E_T^{miss}

According to signal signature, select interested final states objects: tau and MET requirement

ATLAS-CONF-2019-018 3: SR definition and optimization

Final states: 2 tau + large E_T^{miss}

According to signal signature, select interested final states objects: tau and MET requirement

Suppress background using SUSY discriminating variables The cuts are from optimization with signal significance

3: SR definition and optimization

3: SR definition and optimization

4: SM Background estimations (data-driven + MC)

SUSY searches rely primarily on the understanding of the SM BG

4: SM Background estimations (data-driven + MC)

SUSY searches rely primarily on the understanding of the SM BG

4: SM Background estimations (data-driven + MC)

SUSY searches rely primarily on the understanding of the SM BG

Normalise MC prediction in SRs using dedicated CRs \rightarrow transfer factor: **T**

Standard Model

Top, multijets V, VV, VVV, Higgs

Irreducible backgrounds

Dominant sources: normalise MC in data control regions Subdominant sources: MC

Validation

Validation regions used to cross check SM predictions with data

Signal regions

SM process	SR	SR	
	-lowMass	-highMass	10 - AILAS Internal - Multi-jet Multi-boson - Multi-jet Multi-boson - Multi-jet Multi-boson - Mult
Diboson	1.4 ± 0.8	2.6 ± 1.2	8 - SR-lowMass post-fit $SR_{-1}OwM$ as T_{+jets} Higgs T_{+jets} (120, 1) GeV
W+jets	1.5 ± 0.7	2.5 ± 1.9	$6 \qquad m(\tilde{\tau}, \tilde{\chi}_1^0) = (280, 1) \text{ GeV}$
Top quark	$0.04^{+0.80}_{-0.04}$	2.0 ± 0.5	
Z+jets	$0.4^{+0.5}_{-0.4}$	$0.04^{+0.13}_{-0.04}$	
Higgs	$0.01^{+0.02}_{-0.01}$	_	070 75 80 85 90 95 100 105 110 115 120
Multi-jet	2.6 ± 0.7	3.1 ± 1.5	m _{T2} [GeV]
SM total	6.0 ± 1.7	10.2 ± 3.3	■ No significant excess
Observed	10	7	except for SR-lowMass
		Validatio	in and the second se
	l l	alidation region:	s used to
		ross c <u>heck</u> SM pr with data	ediction 5: Compare SM
			predictions with
		Signal regi	ons data

p

p

SUSY search results @ LHC

ATLAS public link CMS public link

P. Higgs at CMS

Squark search (summary) In simplified model approach (depending on decay mode and/or mass splittings): $M(x) < O(1 - T_{2}V) = O(2.2 T_{2}V) < 0.05\% < Cl$

gluino $\{ \widetilde{g} \}$

 $\widetilde{\chi}^0_1 \widetilde{\chi}^0_2 \widetilde{\chi}^0_3 \widetilde{\chi}^0_4$

- M(~g) < O (1 TeV) O (2.2 TeV) @95% CL
 M(~q) < O (0.6 TeV) O (1.5 TeV) @95% CL
- $M(\sim t/\sim b) < O(0.7 \text{ TeV}) O(1.0/1.3 \text{ TeV}) @95\% CL$

Squark search (summary)

Spin 0

squarks

sleptons

Spin 1/2

gluino $\{ \widetilde{g} \}$

 $\widetilde{\chi}^{0}_{1}$ $\widetilde{\chi}^{0}_{2}$ $\widetilde{\chi}^{0}_{3}$ $\widetilde{\chi}^{0}_{4}$

Charginos $\left\{ \begin{array}{c} \widetilde{\chi}_1^{\pm} \\ \widetilde{\chi}_2^{\pm} \end{array} \right\}$

In simplified model approach (depending on decay mode and/or mathematical sector)

- $M(\sim g) \le O(1 \text{ TeV}) O(2.2 \text{ TeV}) @95\% \text{ CL}$
- $M(\sim q) \le O(0.6 \text{ TeV}) O(1.5 \text{ TeV}) @95\% \text{ CL}$
- $M(\sim t/\sim b) \le O(0.7 \text{ TeV}) O(1.0/1.3 \text{ TeV}) @95\% \text{ CL}$

Gaugino search (summary)

squarks

Spin 0

Exclusions is not so large in decays via bosons (up to 400-700 GeV)

Slepton search (summary)

squarks d S sleptons V V

Spin 0

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATL

ATLAS SUSY Searches* - 95% CL Lower Limits

July 2019

	Model	Sigi	nature	$\int \mathcal{L} dt$ [1	fb ⁻¹]	Mass limit				Reference
<i>ie Searches</i>	$ ilde{q} ilde{q}, ilde{q} ightarrow q ilde{\chi}_1^0$	0 <i>e</i> , µ 2 mono-jet 1	2-6 jets E -3 jets E	E_T^{miss} 36.1 E_T^{miss} 36.1		[2x, 8x Degen.] [1x, 8x Degen.] 0.43 0.71	0.9	1.55	m(∛10)<100 GeV m(∛)=5 GeV	1712.02332 1711.03301
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i> 2	2-6 jets E	E_T^{miss} 36.1		Forbide	den	2.0 0.95-1.6	m($\tilde{\chi}_{1}^{0}$)<200 GeV m($\tilde{\chi}_{1}^{0}$)=900 GeV	1712.02332 1712.02332
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e,μ ee,μμ	4 jets 2 jets <i>E</i>	E_T^{miss} 36.1				1.85 1.2	m(𝒱̃ ¹)<800 GeV m(§)-m(𝔅̃ ¹)=50 GeV	1706.03731 1805.11381
nclusi	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 <i>e</i> ,μ 7- SS <i>e</i> ,μ	-11 jets E 6 jets	^{zmiss} 36.1 139			1.	1.8 .15	$m(\tilde{\chi}_{1}^{0}) <400 \text{ GeV} \ m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =200 GeV	1708.02794 ATLAS-CONF-2019-015
4	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow tt\tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b E</i> 6 jets	T_T^{miss} 79.8 139				2. 1.25	25 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$	N N N	Aultiple Aultiple Aultiple	36.1 36.1 139		Forbidden 0.58-0.82 Forbidden 0.74	0.9	m(X	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}){=}300~GeV,~BR(b\tilde{\chi}_{1}^{0}){=}1\\ m(\tilde{\chi}_{1}^{0}){=}300~GeV,~BR(b\tilde{\chi}_{1}^{0}){=}BR(\ell\tilde{\chi}_{1}^{\pm}){=}0.5\\ p(b)=200~GeV,~m(\tilde{\chi}_{1}^{\pm}){=}300~GeV,~BR(\ell\tilde{\chi}_{1}^{\pm}){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
3 rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 b E	E_T^{miss} 139		Forbidden 0.23-0.48	0.	23-1.35	$\begin{array}{l} \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) {=} 130 \ {\rm GeV}, \ m(\tilde{\chi}_{1}^{0}) {=} 100 \ {\rm GeV} \\ \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) {=} 130 \ {\rm GeV}, \ m(\tilde{\chi}_{1}^{0}) {=} 0 \ {\rm GeV} \end{array}$	SUSY-2018-31 SUSY-2018-31
	$\tilde{t}_1\tilde{t}_1$, $\tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$ or $t\tilde{\chi}_1^0$	0-2 <i>e</i> , <i>µ</i> 0-2	jets/1-2 b E	$T_T^{\text{miss}} = 36.1$			1.0		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	1506.08616, 1709.04183, 1711.11520
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0$	1 <i>e</i> ,μ 3	jets/1 b E	T_T^{miss} 139		0.44-0.59			$m(\tilde{\chi}_1^0)=400 \text{ GeV}$	ATLAS-CONF-2019-017
	$t_1 t_1, t_1 \rightarrow \tilde{\tau}_1 b v, \tilde{\tau}_1 \rightarrow \tau G$	$1\tau + 1e, \mu, \tau = 2$	Jets/1 b E	$T_T^{\text{miss}} = 36.1$		0.9	5	.16	$m(\tau_1)=800 \text{ GeV}$ $m(\tilde{v}^0)=0 \text{ GeV}$	1803.10178
	$i_1i_1, i_1 \rightarrow i_1 \neq i_2 \neq i_2 \neq i_2 \neq i_1 \neq i_2 \neq i_2 \neq i_2 \neq i_1 \neq i_2 \neq i_2 \neq i_2 \neq i_1 \neq i_2 \neq i_1 \neq i_2 \neq i_$	0 <i>e</i> ,μ m	iono-jet E	$E_T^{\text{miss}} = 36.1$		0.46 0.43	́		$ \begin{array}{c} m(\tilde{\imath}_1,\tilde{c}) - GeV \\ m(\tilde{\imath}_1,\tilde{c}) - m(\tilde{\chi}_1^0) = 50 \text{ GeV} \\ m(\tilde{\imath}_1,\tilde{c}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV} \end{array} $	1805.01649 1711.03301
	$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , <i>µ</i>	4 b E	Z_T^{miss} 36.1		0.32-0.	88		$m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=180$ GeV	1706.03986
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 <i>e</i> , <i>µ</i>	1 <i>b</i> E	E_T^{miss} 139		Forbidden 0.8	6		$m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$	ATLAS-CONF-2019-016
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e,μ ee,μμ	≥ 1 E	Z_T^{miss} 36.1 Z_T^{miss} 139		$ar{ ilde{\chi}}^0_2$ 0.6 $ar{ ilde{\chi}}^0_2$ 0.205			$egin{array}{c} m(ilde{\chi}_1^0) = 0 \ m(ilde{\chi}_1^\pm) - m(ilde{\chi}_1^0) = 5 \ GeV \end{array}$	1403.5294, 1806.02293 ATLAS-CONF-2019-014
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	2 <i>e</i> , <i>µ</i>	E	$T_T^{\text{miss}} = 139$		0.42			$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2019-008
;;	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via <i>Wh</i>	0-1 e, μ 2	$2b/2\gamma E$	T_T^{miss} 139		$\tilde{\chi}_2^0$ Forbidden 0.74			$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	ATLAS-CONF-2019-019, ATLAS-CONF-2019-XYZ
irec	$\chi_1^*\chi_1^*$ via $\ell_L/\tilde{\nu}$	2 e, µ	E	$T_T^{\text{miss}} = 139$			1.0		$\mathbf{m}(\ell, \tilde{\nu}) = 0.5(\mathbf{m}(\mathcal{X}_1^+) + \mathbf{m}(\mathcal{X}_1^-))$	ATLAS-CONF-2019-008
d L	$\tau\tau, \tau \to \tau \chi_1$ $\tilde{\ell}_{\tau} p \tilde{\ell}_{\tau} p \tilde{\ell} \to \ell \tilde{Y}^0$	2 e. u	0 iets F	$T_T = 139$		1°L, °R,L1 0.10-0.3 0.12-0.39			$m(\tilde{x}_1) = 0$ $m(\tilde{x}_1^0) = 0$	ATLAS-CONF-2019-018 ATLAS-CONF-2019-008
		2 e, µ	≥ 1 E	Z_T^{miss} 139		0.256			$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	ATLAS-CONF-2019-014
	$\tilde{H}\tilde{H}, \tilde{H} ightarrow h\tilde{G}/Z\tilde{G}$	0 <i>e</i> , μ 4 <i>e</i> , μ	$\geq 3 b$ E 0 jets E	E_T^{miss} 36.1 E_T^{miss} 36.1		0.13-0.23 0.29-0. 0.3	88		$\begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array}$	1806.04030 1804.03602
lived cles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet E	E_T^{miss} 36.1		0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
arti	Stable \tilde{g} R-hadron	N	lultiple	36.1				2.0		1902.01636,1808.04095
рğ	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	N	lultiple	36.1		$[\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$		2.05	2.4 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1710.04901,1808.04095
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	<i>eµ,eτ,μτ</i>		3.2	:			1.9	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607.08079
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to W W / Z \ell \ell \ell \ell \nu \nu$	4 e, μ	0 jets E	E_T^{miss} 36.1		$\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] $		1.33	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1804.03602
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-5 la	arge- <i>R</i> jets	36.1		$[m(\tilde{\chi}_1^0)=200 \text{ GeV}, 1100 \text{ GeV}]$	1.0	1.3 1.9	Large $\lambda_{112}^{\prime\prime}$	1804.03568
PV	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N.	Aultiple	36.1			1.05	2.0	$m(\chi_1)=200$ GeV, bino-like	ATLAS-CONF-2018-003
Я	$tt, t \to t \chi_1^-, \chi_1^- \to tbs$ $\tilde{t}, \tilde{t}, \tilde{t}, \to bs$	N 2 iz	nuitipie ets + 2 h	36.1	.		1.05		$m(\chi_1)=200$ GeV, bino-like	ATLAS-CONF-2018-003 1710.07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow os$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow a\ell$	2 e. u	2 h	36.7				0.4-1.45	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.05544
	···· · · · · · · · · · · · · · · · · ·	1 µ	DV	136		[1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k} <3e-9]	1.0	1.6	$BR(\tilde{t}_1 \to q\mu) = 100\%, \cos\theta_t = 1$	ATLAS-CONF-2019-006
*Only	a selection of the available ma	ss limits on nev	v states d	or	10		 1		Mass scale (TeV)	

*Only a selection of the available mass limits on new states phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

65

New Physics beyond the SM

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: May 2019

ATLAS	Preliminary
-------	-------------

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	D ⁻¹] Limit	Reference
额外维 粒子	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ \hline 2 \ \gamma \\ multi-channe \\ 0 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4 j - 2 j $\ge 2 j$ $\ge 3 j$ - 2 J $\ge 1 b, \ge 1 J/2$ $\ge 2 b, \ge 3$	Yes 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	$\begin{tabular}{ c c c c c c } \hline M_D & 7.7TeV & $n=2$ \\ \hline M_S & 8.6TeV & $n=3 \text{HLZ NLO}$ \\ \hline M_{1h} & 8.9TeV & $n=6$ \\ \hline M_{1h} & 8.2TeV & $n=6$ \\ \hline M_{1h} & 9.55TeV & $n=6$ \\ \hline M_{1h} & 9.55TeV & $n=6$ \\ \hline M_{2h} & $0.11 \ \text{G}_{KK} \ mass & 2.3TeV & $k/\overline{M}_{P_1} = 0.1$ \\ \hline M_{2KK} \ mass & 1.6TeV & $k/\overline{M}_{P_1} = 1.0$ \\ \hline M_{2KK} \ mass & 3.8TeV & $Tier(1,1), \mathcal{B}(A^{(1,1)} \to tt) = 1$ \\ \hline \end{tabular}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 TLAS-CONF-2019-003 1804.10823 1803.09678
W ′, Z ′	$\begin{array}{c} \mathrm{SSM}\ Z' \to \ell\ell\\ \mathrm{SSM}\ Z' \to \tau\tau\\ \mathrm{Leptophobic}\ Z' \to bb\\ \mathrm{Leptophobic}\ Z' \to tt\\ \mathrm{SSM}\ W' \to \ell\nu\\ \mathrm{SSM}\ W' \to \tau\nu\\ \mathrm{HVT}\ V' \to WZ \to qqqq \ \mathrm{mode}\\ \mathrm{HVT}\ V' \to WH/ZH \ \mathrm{model}\ B\\ \mathrm{LRSM}\ W_R \to tb\\ \mathrm{LRSM}\ W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \end{array}$ $\begin{array}{c} 1 \ e, \mu \end{array}$ $\begin{array}{c} 1 \ \sigma, \mu \end{array}$ $\begin{array}{c} 1 \ \sigma, \mu \end{array}$ $\begin{array}{c} 1 \ B \\ 0 \ e, \mu \end{array}$ multi-channe multi-channe 2 \mu \end{array}	- 2 b ≥ 1 b, ≥ 1J/ - 2 J el el 1 J	- - Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 6.0 TeV W' mass 3.7 TeV V' mass 3.6 TeV V' mass 3.6 TeV V mass 3.25 TeV W _R mass 3.25 TeV W _R mass 5.0 TeV	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 FLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
Contact interactions	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e, μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	$ \begin{array}{c c} \Lambda & & & & & \\ \hline \Lambda & & & & & \\ \hline \Lambda & & & & & & \\ \hline \Lambda & & & & & & \\ \hline \Lambda & & & & & & \\ \hline \Lambda & & & & & & \\ \hline L & & & & & & \\ \hline L & & & & & & \\ \hline L & & & & & & \\ \hline L & & & \\ L & & \\ L & & & \\ \hline L & & & \\ \hline L & & & \\ L & & & \\ \hline L & & & \\ L & & $	1703.09127 1707.02424 1811.02305
暗物质	Axial-vector mediator (Dirac DM Colored scalar mediator (Dirac $V_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac DM)	Λ) 0 e, μ DM) 0 e, μ 0 e, μ Λ) 0-1 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, \ 0\mbox{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	$\begin{tabular}{ c c c c c c } \hline m_{med} & $1.55 {\rm TeV}$ & $g_q = 0.25, g_\chi = 1.0, m(\chi) = 1 {\rm GeV}$ \\ \hline m_{med} & $1.67 {\rm TeV}$ & $g=1.0, m(\chi) = 1 {\rm GeV}$ \\ \hline m_{ϕ} & $700 {\rm GeV}$ & $m(\chi) < 150 {\rm GeV}$ \\ \hline m_{ϕ} & $3.4 {\rm TeV}$ & $y = 0.4, \lambda = 0.2, m(\chi) = 10 {\rm GeV}$ \\ \hline \end{tabular}$	1711.03301 1711.03301 1608.02372 1812.09743
leptoquark	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1902.00377 1902.00377 1902.08103 1902.08103
额外夸克	$\label{eq:constraint} \begin{array}{l} VLQ\;TT \to Ht/Zt/Wb + X\\ VLQ\;BB \to Wt/Zb + X\\ VLQ\;T_{5/3}\;T_{5/3}\;T_{5/3} \to Wt + X\\ VLQ\;Y \to Wb + X\\ VLQ\;B \to Hb + X\\ VLQ\;QQ \to WqWq \end{array}$	multi-channe multi-channe $2(SS)/\geq 3 e,\mu$ $1 e, \mu$ $0 e,\mu, 2 \gamma$ $1 e, \mu$		Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1808.02343 1808.02343 1807.11883 1812.07343 TLAS-CONF-2018-024 1509.04261
重费米子	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1γ - 3e,μ 3e,μ,τ	2 j 1 j 1 b, 1 j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV only u* and d*, A = m(q*) AT q* mass 5.3 TeV only u* and d*, A = m(q*) AT b* mass 2.6 TeV only u* and d*, A = m(q*) AT t* mass 3.0 TeV AT AT y* mass 1.6 TeV A = 3.0 TeV A	TLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
其他	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$ \begin{array}{r} 1 \ e, \mu \\ 2 \mu \\ 2,3,4 \ e, \mu \ (SS \\ 3 \ e, \mu, \tau \\ - \\ \hline 5 = 13 \ TeV \\ \text{vartial data} \end{array} $	≥ 2 j 2 j 5) - - - - - √ s = 13 full d	Yes - - 3 TeV ata	79.8 36.1 36.1 20.3 36.1 34.4	N° mass 560 GeV N _R mass 3.2 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV 10 ⁻¹ 1 10 Mass scale [TeV]	TLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

EXO-16-056

Resonance (di-jet)

Dark Matter (暗物质)

Searches with MET+X or mediator

- Searches in the Mono-X final states: Many models constrained up to 1.6 TeV
- Searches also in the Di-Jet final states exclude up to 2.6 TeV for almost whole DM range

Leptoquarks

m(LQ1,LQ2) > 1.1TeV
m(LQ3) > 0.9 TeV

- Leptoquarks (LQs) arise in many models, such as grand unified theories, compositeness models and superstring theories.
- LQs: carry colour charge, fractional electric charge, and both lepton and baryon quantum numbers.
- If exist, decay into a lepton and a quark. Search for resonance of lepton+jet in experiment.

New J. Phys. 18 (2016) 093016

CMS-PAS-B2G-16-028

No significant excess observed in $3 \sim 36$ fb-1. Results in terms of $\beta = BR(LQ \rightarrow lq)$

Heavy quarks (额外夸克)

Vector-like T quark models solve hierarchy problem

new heavy partner of top in loop

- Search of T (q=2/3) and B (q=-1/3) VLQ decaying to W,H,Z and t,b produced in pairs
- Recent combination of 7 final states (H(bb)t, W(lv)b, W(lv)t, Z(vv)t, Z(ll)t/b, trilepton/same-sign dilepton, fully hadronic)
- Limits at the level of 1.3-1.4 TeV

Prospects at Future Collider

- Long term prospects for 2 more collider scenarios have been studied (14, 33, 100 TeV @3000 fb⁻¹)
- Use same search strategy as 8-13TeV @LHC
- Use simple analysis strategies, assume 20% syst. uncertainty, avoid assumption on detector design, pileup sensitivity, etc
Prospects at HL-LHC (summary)

Discovery potential with 3000 fb⁻¹@14TeV

Gluinos ~ 2.5 TeV ; Stop ~ 1.2 TeV ; EWKinos ~ 0.9 TeV ; Staus ~ 0.5 TeV

In most BSM scenarios, we expect the HL-LHC will increase the present reach in mass and coupling by 20 50% and potentially discover new physics that is currently unconstrained.

[GeV]

Prospects at HL-LHC

→4 TeV

Future hadron collider projects in a nutshell -- The next discovery machine

HL-LHC: E_{CM} = 14 TeV, 3 ab⁻¹, 2026~2035... (formally approved as *project* by CERN council last week)

Future Circular Collider FCC-hh (CERN):

- $E_{\rm CM} \sim 100 \,{\rm TeV}$ in 100 km ring, $L \sim 2 \times 10^{35} \,{\rm s}^{-1} {\rm cm}^{-2}$
- ~16 T magnets, possibly HE-LHC (*E*_{CM} ~ 28 TeV) as intermediate stage
- Huge detectors for muon p_T measurement
- Possible start of physics ~ 2035

SppC (China):

- E_{CM} ~ 71 TeV in 55 km ring, L ~ 1 × 10³⁵ s⁻¹cm⁻²
- Requires very high gradient dipole magnets ~ 20 T
- Possible start of physics ~ 2042

Prospects at Future Proton Colliders

Discovery (Exclusion) potential with 3000 fb⁻¹@33,100 TeV

Gluinos ~ 11 (13) TeV

Stop ~ 6.5 (8) TeV

EWKinos ~ 2.1 (3.2) TeV

The reach of HE-LHC is generically more than double of HL-LHC

The journey into new physics territory has just only begun, and for sure, exciting times are ahead of us!

MAR

LHC, Higgs and Beyond (ATLAS Highlights)Blaeu 1664

CERN Circular Colliders & FCC

ee he

Long-Lived particles in SUSY

Minimal Supersymmetric Standard Model

Standard Model Particles and Fields		Supersymmetric Partners			
		Interaction Eigenstates		Mass Eigenstates	
Symbol	Name	Symbol	Name	Symbol	Name
q = u, d, c, s, t, b	quark	$\widetilde{q}_L,\widetilde{q}_R$	squark	$\widetilde{q}_1, \widetilde{q}_2$	squark
$l = e, \mu, \tau$	lepton	$\widetilde{l}_R, \widetilde{l}_L$	slepton	$\widetilde{l_1}, \widetilde{l_2}$	slepton
$l = v_e, v_\mu, v_\tau$	neutrino	$\widetilde{\mathcal{V}}$	sneutrino	$\widetilde{\mathcal{V}}$	sneutrino
g	gluon	$\widetilde{\mathcal{O}}$	gluino	ğ	gluino
W^{\pm}	W-boson	\widetilde{W}^{\pm}	wino	\sim +	
H^+_u, H^d	charged Higgs boson	$\widetilde{H}^{\scriptscriptstyle +}_{u}, \widetilde{H}^{\scriptscriptstyle -}_{d}$	charged higgsino	$\chi_{1,2}$	chargino
В	B-field	\widetilde{B}	bino		
W^0	W ⁰ -field	\widetilde{W}^0	wino	$\widetilde{\chi}^{0}_{1,2,3,4}$	neutralino
H^0_u, H^0_d	neutral Higgs boson	$\widetilde{H}^0_u, \widetilde{H}^0_d$	neutral higgsino		

LHC

pp

• $\sqrt{s} = 14 \text{ TeV}$ (7 times higher than Tevatron/Fermilab) \rightarrow search for new massive particles up to m ~ 5 TeV

• $L_{design} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (>10² higher than Tevatron/Fermilab) \rightarrow search for rare processes with small σ (N = L σ)

Discovery and exclusion

 P-value=probability that result is as/less compatible with the hypothesis

DISCOVERY:

- The <u>null hypothesis</u> H₀ describes <u>background only</u>
 - If the *p*-value of H₀ is found below a given threshold, one can consider looking for a better model
 - In HEP, $Z \ge 5$ is conventionally required to claim a discovery
- The alternative hypothesis H₁ describes signal + background
 - The alternative hypothesis is supposed to fit the data very well for claiming a discovery

EXCLUSION:

- The <u>null hypothesis</u> H₀ describes <u>signal + background</u>
 - One is interested into setting an upper limit to the intensity of the signal alone
- The alternative hypothesis H₁ describes background only
 - No real need to test for it
 - The background-only model becomes important only in case of discovery

Interpretation strategy

Based on the number of observed, expected events in all regions with all uncertainties: Probability density function (PDF)

Likelihood function: L(μ,θ) μ: signal strength (POI); θ: nuisance parameters(NP) Profile Likelihood: constrain uncertainty (NP) as part of a likelihood fit

Construct test statistics t_{μ} based on likelihood ratio λ :

of signal is excluded at 95% CL..... $\mathrm{CL}_s = \frac{\mathrm{CL}_{s+b}}{\mathrm{CL}_b}$ $=\frac{p_{s+b}}{1-p_{t}}$ The above check has been done for each signal grid points on the SUSY model. The line can be drawn for the area where points are excluded $\tilde{g}_{\cdot}\tilde{g} \rightarrow qqqqWW\chi^{0}\chi^{0}$, x=1/2 ATLAS Preliminary 1-lepton + jets + E_+max acted limit (hard lepton L dt - 20.3 fb⁻¹, (5-8 TeV od limit (soft lonton) und limit (+ 1 a⁵¹³ 500 400 1200 m_ä [GeV]

85

If CLs<0.05: the value

Simultaneous fit

- Background estimates in SRs are obtained by a *simultaneous fit* in each channel based on the profile likelihood method. Three dedicated fit for different purpose...
 - Background-only fit
 - Fit for all CRs, excluding SRs.
 - Get background-only estimates.
 - Also extrapolate to VRs (non used in fit, only for cross-check) and SRs.
 - Discovery fit
 - Fit for all CRs and SRs.
 - Signal contamination is turned off in CRs and set as a dummy number 1 in SR (so, the fitted non-SM signal strength = the excess in Nevents of SR)
 - Get model-independent upper limit on signal in SR.
 - Exclusion fit
 - Fit for all CRs and SRs.
 - Signal is turned on in all regions, according to model-dependent prediction.
 - Got signal model-dependent exclusion from all CRs+SRs →final exclusion contours for SUSY model
- The basic strategy is to share background information in all regions (CR,SR,VR). The background parameters are predominantly constrained by CRs with large statistics, which in turn reduces the impact of uncerts in SR.

Inner Detector: Highly segmented silicon strips, determine very accurately charged particles trajectories

Solenoid Magnet: Solenoid coil that generates a 2T magnetic field in the region of the Inner Detector

Electromagnetic Calorimeter: Electron and photon energies are measured through electromagnetic showers

- Hadronic Calorimeter: Hadrons interact with dense material and produce a shower of charged particles
- Toroid Magnets: 8 toroidal coils that create a 0,4T magnetic field in the area of the Muon Spectrometer
- Muon Spectrometer: Muons traverse the rest of the detector and are measured in its outer layers

The Higgs mechanism, an analogy...

D. Miller (UC London)

The Higgs field fills all space

A 'particle' that moves in the Higgs field ...

... moves slower the more it attract attention (interacts with the Higgs field, generating its mass, the larger, the stronger its interactions...)

The Higgs particle, an analogy...

Somebody whispers a rumour into the room...

... and the field starts to get excited and interact with itself giving birth to a massive particle

Excellent LHC performance is a (nice) challenge for the experiment:

- Trigger
- Pile-up
- Maintain accuracy of the the measurements in this environment

Inner Detector for a Z $\rightarrow \mu\mu$ event with 25 primary vertices

Unification of Forces

Standard Model of Elementary Particles

The Worldwide LHC Computing Grid (WLCG)

Tier-0 (CERN):
Data recording
Initial data reconstruction
Data distribution

Tier-1 (12 centres):

Permanent storage
Re-processing
Analysis
Simulation

Tier-2 (68 federations of >100 centres):

- Simulation
- End-user analysis

SUSY models: good sale in market

Simplified Models:

- Not really a model (Br~100%, most masses fixed at high scales)
- Important tool for signal region optimization & interpretation

Phenomenological models:

- pMSSM: captures "most" of phenomenologic features of Rparity conserving MSSM
 - 19 free parameters: M1,M2,M3 ; tan β, μ and m_{A;} 10 sfermion mass parameters; A_t, A_b and A_τ
 - Comprehensive and computationally realistic approximation of the MSSM with neutralino LSP
- □ GGM (gravitino)
- Complete SUSY models: mSUGRA, GMSB ...