HEP DATA ANALYSIS: GROUP 3

Q. Dong, H. Guo, Y. Huang, F. Li, J. Liu, Q. Man, C. Que, C. Xi, K. Zhang, L. Zhang, Y. Zhang, H. Zhou, Y. Zou

TASK I: EVENT SELECTION

- Select the signal events by putting a cut on the Data tree, do the following:
 - Find a cut variable "ann" using the signal MC tree, so as you can keep 90% of your signal.
 - 2. Given the cut you find above, using the MC background tree, evaluate the corresponding background rejection rate, i.e. the "power" to reject the background (see our lecture note for the definition of the "power").
 - 3. Report the cut you find, and the "power" you get.

TASK I: PROCEDURES

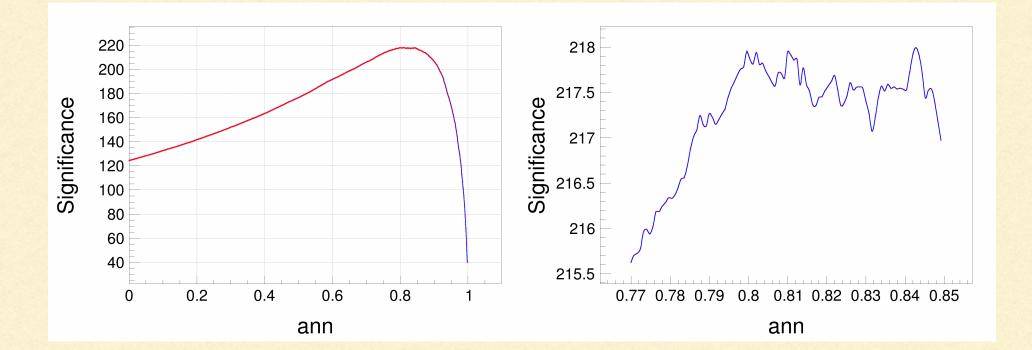
- How to do event selection? CUT!!
 - Monte Carlo Simulation: Sig & Bkg
 - Real Data: Sig? Bkg?
 - How to qualify the cut condition?
 - I. Efficiency(Purity)
 - 2. Significance

Determined Cut Condition

Apply Cut Condition

.....

TASK I: KEEP 90% EFFICIENCY


- Efficiency: ratio between # of signals before and after
- Binary Search.

```
Int_t bin_max = nbinsx;
Int_t bin_min = 0;
Int_t bin_mid = 0.5*(bin_max+bin_min);
while( bin_min < bin_max ) {</pre>
    sum = h1->Integral(bin_mid,nbinsx); .
    if( abs(sum/(n_entries+0.0) - ratio) <= eps ) {</pre>
        cout<<"==> Cut Point founded!..."<<endl;</pre>
        break:
    }
    else if( (sum/(n_entries+0.0) < ratio - eps) ) {</pre>
        bin_max = bin_mid;
    3
    else if( (sum/(n_entries+0.0) > ratio + eps) ) {
        bin_min = bin_mid;
    }
    bin_mid = ((Int_t)(0.5*(bin_max+bin_min)) == bin_mid)? bin_mid+1 : (Int_t)(0.5*(bin_max+bin_min));
cut = h1->GetBinCenter(bin_mid);
```

TASK I: RESULTS

Cut	ann >= 0.772875		
	Total	After Cut	Difference
Signal	20,000	8,00	1,999
Background	20,000	2,893	17,107
Significance		215.916	
		H_0 is true	H_0 is false
	Fail to Reject	0.90005	0.14465
	Reject	0.09995	$1 - \beta = 0.85535$

TASK I: EXTRA

$$S = \sqrt{2(s+b)\log(1+\frac{s}{b}) - 2s}$$

6

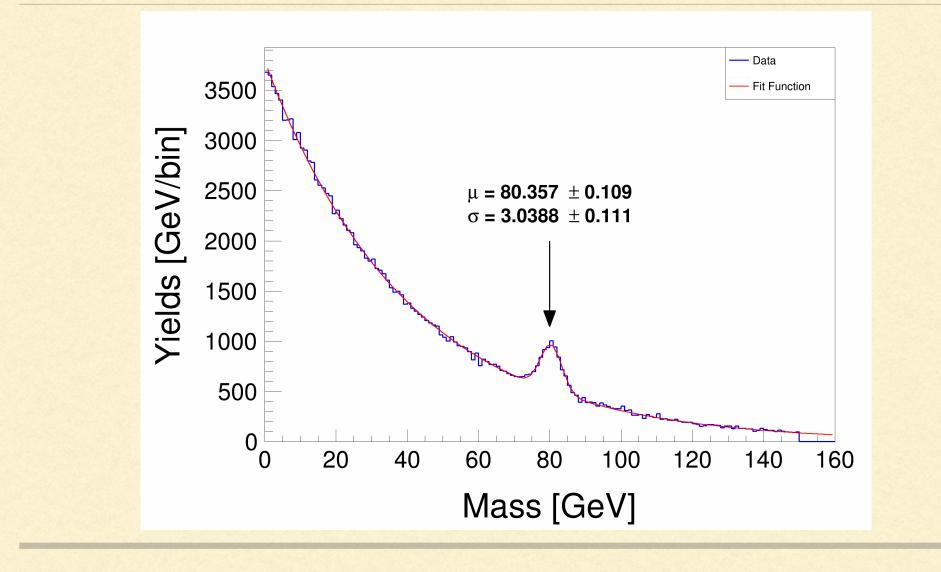
TASK I: EXTRA RESULTS

Cut	ann >= 0.80		
	Total	After Cut	Difference
Signal	20,000	17339	2661
Background	20,000	2506	17494
Significance		217.833	
		H_0 is true	H_0 is false
	Fail to Reject	0.86695	0.1253
	Reject	0.13305	$1 - \beta = 0.8747$

TASK 2: FIT TO DATA

Fit to the data mass distribution, and extract the mass mean value (μ) and the width (σ) using a composed function.

- Apply the cut you have found in Task I to the data tree on the "ann" variable, and draw the "mass" into a histogram.
- Define a composed function: $f(x) = k \cdot f_s(x) + (1 k) \cdot f_b(x)$ using Gaussian as your signal function and exponential function as your background function.
- Fit the composed function to the data mass histogram, to extract the mean value (μ) and the width (σ) of the signal mass peak.


TASK 2: FIT PROCEDURE

- I. Fit data in multiple sub ranges
- 2. Sub ranges fitting results as initial value for whole fitting

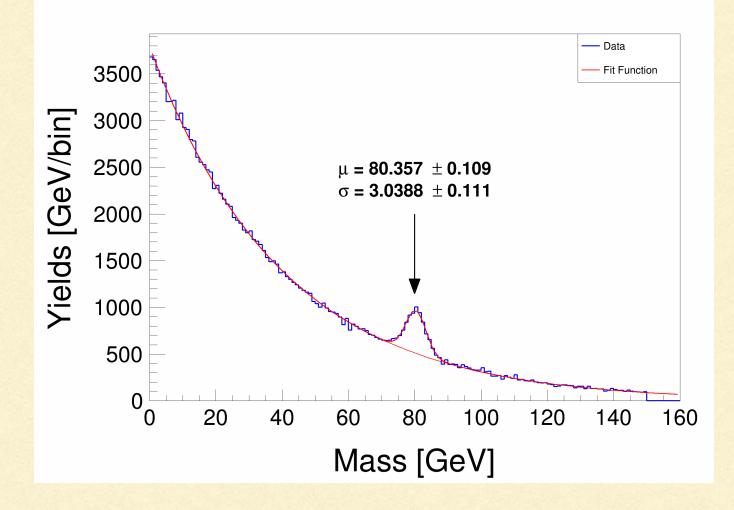
```
Double_t par[6];
TF1* f1 = new TF1("f1","gaus",75,85);
TF1* f2 = new TF1("f2","expo",0,160);
TF1* fitfunc = new TF1("fitfunc","[5]*gaus(0)+(1-[5])*expo(3)",0,160);
massh->Fit("f1","QR");
massh->Fit("f2","QR+");
f1->GetParameters(&par[0]);
f2->GetParameters(&par[3]);
par[5] = 0.5;
fitfunc->SetParameters(par);
```

```
// Fitting data!!
massh->Fit("fitfunc","");
```

TASK 2: FIT RESULTS

TASK 2: FIT TO DATA

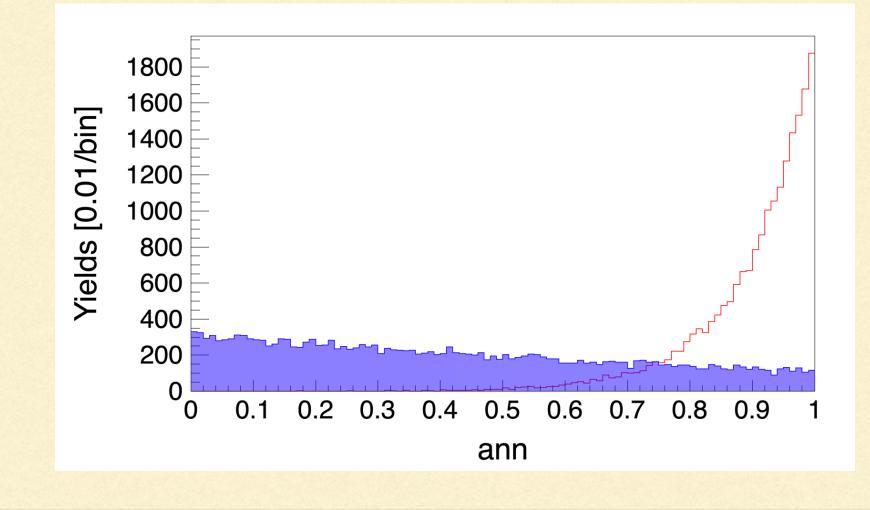
$$f(x) = kAe^{-0.5\left[\frac{(x-\sigma)}{\mu}\right]^2} + (1-k)e^{C+\lambda x}$$

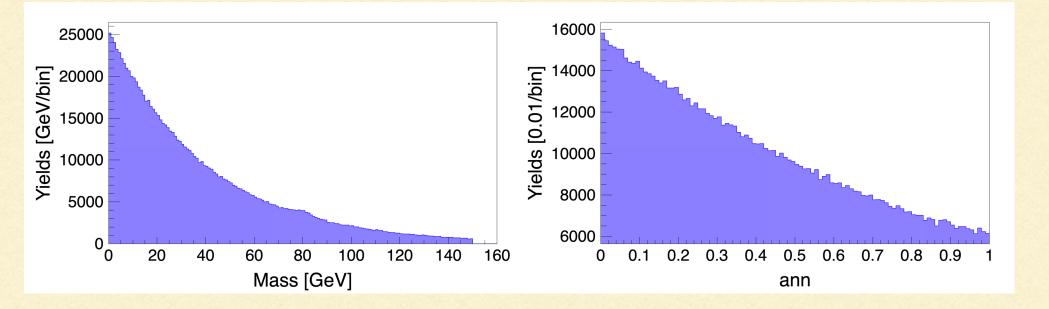

Para.	Value	Error
Amp.	992.23	32.278
Mean	80.357	0.10924
Width	3.0388	0.11061
Constant	8.8722	0.00633
Lambda	-0.0250	0.00008
K	0.4688	0.00276

SUMMARY


		ann >= 0.772875	ann >= 0.80
MC S	Efficiency	0.90005	0.86695
	Significance	215.916	217.833
	Mean	80.357 (0.109)	80.384 (0.106)
	Width	3.0388 (0.111)	2.9896 (0.104)
	Local-S	44.401	45.892
	Global-S	9.2136	9.4766
		$\mathcal{E}dt \times \sigma \times \epsilon_{eff} = N$	

"We're walking along a rugged path, never knowing what you're going to get."


-Yulei Zhang



14

MC Simulation

Data

// Apply ann cut on both Sig and Bkg
char temp[50];
sprintf(temp,"ann>=%f",cut_anna);
TCut cut1 = temp;
Long64_t cut_Sig = Sig->Draw("ann",cut1);
Long64_t cut_Bkg = Bkg->Draw("ann",cut1);
Double_t Significance = sqrt(2*((cut_Sig+cut_Bkg)*log(1.0+(cut_Sig+0.0)/cut_Bkg)-cut_Sig));