Task 3: Imaging Hadronic Calorimeter Introduction and Overview

Jianbei Liu

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

> MOST2 CEPC R&D Project Annual Workshop IHEP, Beijing April 29, 2019

Central task

- Building a large AHCAL technological prototype
 - More than 10 k channels of scintillator + SiPM + embedded electronics
- Testing it with high energy particle beams at CERN

Taken from CALICE AHCAL, for illustration purpose only.

Task Breakdown (I)

- AHCAL design and optimization
 - Key parameters: number of layers, sampling fraction, cell-size, number of readout layers, total thickness
- Technology R&D
 - Active layers
 - Cell design and optimization: scintillator + SiPM
 - Production and wrapping of scintillator tiles
 - Scintillator tile gluing
 - Structure design of active layers
 - SiPM monitoring and calibration
 - Readout electronics and DAQ
- Design and manufacturing of absorber stack, calorimeter mechanical structure and test platform

Task Breakdown (II)

- Production of active components
 - Scintillator tiles, wrapping
 - FEE boards
 - Active layer assembling
- Calorimeter assembling
- System integration (detector + electronics + DCS)
- Beam test
- Data analysis and performance studies

Task Breakdown and Assignments

- USTC: detector monitoring and calibration, readout electronics and DAQ, structure design and manufacturing, 20% of batch testing and assembling, design and development of cosmic-ray test system, cosmic-ray test.
- IHEP: scintillator tile design, production and wrapping, active module assembling technique, 40% of batch testing and assembling, beam test platform
- SJTU: calorimeter design and optimization, tile batch testing system, 40% of batch testing and assembling
- All: calorimeter integration, beam test, data analysis

• Performance of the HCAL prototype at test beam has to reach a level of

Energy Linearity :

3% (10GeV < E < 80GeV)

Energy resolution :

60%/(E/GeV)⊕3% (10GeV < E < 80GeV)

Task Schedule

标识号	任务名称	¥1		¥2	Y3	¥4	¥5
1	成像型强子量能器技术验证						
2	1) 量能器原型机物理设计						
3	1.1)量能器关键参数的选取和优化						
4	1.2)量能器性能模拟研究	1	The second se				1
5	2) 灵敏探测器的研制						
6	2.1) 原材料、器件采购						
7	2.2) 灵敏单元结构的设计和优化						
8	2.3)闪烁单元生产工艺的研究						
9	2.4) 闪烁单元批量生产] 1	·	h			
10	2.5)闪烁单元包装工艺的研究			el 🛛			
11	2.6)闪烁单元批量包装			*	η		
12	2.7闪烁单元批量测试装置制作			b			
13	2.8)闪烁单元批量测试						
14	2.9)单层灵敏探测器工艺摸索			T			
15	3)读出电子学和数据获取系统						
16	3.1)原材料、电子元器件的采购		h				
17	3.2)前端读出板和数据接口板的设计和开发			-			
18	3.3)SPIROC芯片功能测试板开发						
19	3.4)前端读出板和数据接口板的批量制作与测试				E-		
20	3.5)测试用数据获取板的开发与制作						
21	3.6)数据获取板的开发与制作				ſ		
22	4) SiPM性能监测和刻度系统的研究						
23	4.1)基于LED的监测系统的开发				-		
24	4.2) 基于光纤的监测刻度系统的研究						
25	5) 机械设计和制作						
26	5.1)探测器灵敏层结构						
27	5.2) 原型机吸收体和支撑结构	-			-		
28	5.3) 東流测试平台					le la	
29	5.4) 宇宙线测试半台	ļ					
30	6) 量能器原型机系统集成				•		
31	6.1)探测器灵敏层的组装和测试						
32	6.2) 整体样机的集成					-	
33	7) 量能器原型机测试和性能研究						
34	7.1)数据分析软件的开发和准备						
35	7.2) 原型机宇宙线测试及质量检验						
36	7.3) 原型机束流测试前期准备和运输						
37	7.4) 原型机束流测试及样机运回						
38	7.5)测试数据分析及原型机性能研究						1
39	8)项目总结						
40							

What was planed for the first year

- Prototype physics design and optimization.
- Scintillator + SiPM cell design and optimization
- Development of scintillator title production technique
- Launching scintillator title production
- Development of auto tile wrapping device
- Design and development of tile batch testing system
- Design of the structure of sensitive layers.
- Design of FEE and DIF boards

Where We Are

- Prototype design and optimization
 - Progressing well, hopefully to finish by this summer
- Scintillator + SiPM cell design and optimization
 - Done (cell size subject to further optimization)
- Development of scintillator title production technique
 - Done
- Starting scintillator title production
 - Pending cell size optimization
- Development of tile wrapping device
 - Design done
- Design and development of tile batch testing system
 - Preliminary design available
- Design of the structure of sensitive layers
 - Not started yet
- Design of FEE and DIF boards
 - Exploring lots of synergies with MOST1 sci-ECAL

Annual Milestones

Highlights of accomplishments

- Optimized AHCAL design
 - SiPM dynamic range
 - Sampling fraction and number of readout layers
- Developed software compensation algorithms
- Developed injection moulding technique for producing scintialtor tiles
- Designed an automatic scintialtor tile wrapping machine
- Designed a batch testing system for scintialtor tiles
- Developed SiPM readout board based on SPIROC-2e (in synergy with the ECAL task from CPEC MOST1)

Injection moulding Scintillator tiles

- 300 tiles polystyrene, BisMSB
 - injection moulded at Beijing
 - incl. dimple, no further surface treatment;
- Mechanical tolerances is fine for assembly, the size error less than 50um;
- Scintillators Light output fluctuation is $\sigma < 7\%$;

Size uniformity

Tiles size(mm)	30.08x30.01	30.07x30.04	30.04x30.02	30.09x30.09	30.05x30.03
	x3.08	x3.09	x3.09	x3.09	x3.09
Light output(p.e.)	23.5	22.78	22.86	25.02	23.54

Scintillator tile automatic wrapping

- Motivation:
 - 7M detector cells;
 - Reflective foils packaging can't be done by manual;
- Progress:
 - Companies give they preliminary design;
 - Robotic arm design is the best way;

It can be used for 3cm*3cm, 4cm*4cm and 5cm*5cm detector cell;

Packaged cell

Detector cell test system design

- Capable to test about 100 detector cells a time
- Preliminary design of electronics and mechanical structure available

Task Breakdown

