Development of a batch testing system of scintillator tiles and cooling studies for CEPC Calorimeters

Xianke He

SHANGHAI JIAO TONG UNIVERSITY

IHEP, April 29, 2019

Outline

- Discuss the result when Fan and water cooling methods applied on ECAL
- Discuss the result when Water cooling method applied on HCAL and gravity influence on Temperature
- The progress of scintillator batch test system of AHCAL

Schematic of CEPC Detectors

Baseline : PFA approach (ILD-like) Silicon + TPC + ECAL&HCAL + Muon

Full Silicon Tracker

Dual Readout

ECAL Layout and Structure

- One cylindrical barrel + two disk-like endcaps
- $\sim 2 \text{ m in radius, and } \sim 5.3 \text{ m long}$ (Z direction).
- 8 barrel sections: 1 section → 8 staves, 1 stave → 5 modules, 1 module → 5 columns
- Each endcap \rightarrow 4 quadrants, 1 quadrant \rightarrow 9 columns
- Column: slabs integrated into supporting structures
- Best possible hermeticity and minimum crack regions

ECAL Channel Count, Power Consumption

• Numbers of channels

- 17.3 M for barrel, 7.43 M for endcaps

- Total power consumption: 146 kW
 - 124 kW (5mW/ch, SKIROC)
 - 22 kW (9mW/DIF/m² × 2400m²)
- Active cooling is likely required
- Passive cooling might be possible with a reduced number of channels

→ larger cell-size (degrade PFA performance?)

ECAL Model Structure (ScW)

Simulation vs Experimental Setup

Sample Board

Model

Thermal Conductivity:

Silicon(Chips): $148W \cdot m^{-1} \cdot C^{-1}$ FR - 4: $0.294W \cdot m^{-1} \cdot C^{-1}$ Copper: $401W \cdot m^{-1} \cdot C^{-1}$

Specific Heat:

Silicon(Chips): $712J \cdot kg^{-1} \cdot C^{-1}$

 $FR - 4: 1150 J \cdot kg^{-1} \cdot C^{-1}$ Copper: $385 J \cdot kg^{-1} \cdot C^{-1}$

Default Analysis settings

Convection: Stagnant Air Film coefficient: $5e - 06W / mm^2 \cdot C^{\circ}$ 5~25 for Natural flowing air

- Environment temperature changes from 26 to 40 by 2 degrees
- Define chip side as top side and scintillator side as bottom side.
- ✓ Put 9 sensors on each side and 2 sensors for the environment temperature.

Simulation vs Measured: 4-chip PCB

- Measured results has a good agreement with simulation results
- Take advantage of the good linearity to do the temperature reconstruction
- Small difference between simulation and measured temperatures

Simulation of Double W + PCB

Two tungsten plates (2.8mm) are put on the top and the bottom side

Standalone

Double Tungsten

Temperature: 2.5-7.1 °C

Temperature: 3.0-5.6 °C

Ambient Temperature: 0 °C

Difference Value in One Face

Temperature Difference between 9*3 & 9*7 measured points and environmental Temperature from data

The existence of Wolfram will relatively reduce the difference value of the temperature distribution.(Based on simulation 2019/4/29 and experiment we have done before.)

30-Layer with 6-chip PCB

Simulation of a 30-Layer model with ScW

- Only 6-chip on each layer's PCB
- Due to the influence of adjacent layers, middle layers have higher temperature. 11

Temperature vs Layer #

Layer Temperature Value Temperature/Celsius 95 2.5 2.5 2.5 2.2 Temperature Difference/Celsius 2 Max 26 Min 1.8 Stand-Alone 1.6 **Temperature Difference** 1.4 (Maximum – Minimum) 25 1.2 24.5 0.8 0.6 24 0.4 23.5 0.2 0 23 6 8 10 12 14 2 4 6 8 10 12 14 LayerNumber LaverNumber

- Due to the influence of adjacent layers, middle layers have higher temperature than layers in the front or end. Temp in the middle part keeps stable.
- With absorbers, the model has a better thermal conductivity, it results in a temperature difference value which is lower than that in a stand-alone PCB.

Model with different cooling conditions

No cooling+ an opening

Environment temperature: All set to 20 °C.

Material of closed shading box: Aluminium (10mm).

30-Layer With Fan and water cooling

Results of different cooling methods

Layer15 with fan cooling

22.6591

22.3653 22.0714

21.7776

21.4837

21.1899

20.8960

20.6022 20.3083

Layer15 without cooling

No cooling+ an opening

2019/4/29

USTC+SJTU

Water cooling Layer 15

Result of different cooling methods

USTC+SJTU

1. A cooling system is currently needed.

- 2. For a prototype, fan cooling is nearly enough.
- 3. Water cooling may be a difficulty from the perspective of mechanics $_{2019/4/29}$

HCAL: Geometry and Layout

SDHCAL

HCAL Channel Counts, Power Consumption

- HCAL Barrel, R_{in} = 2.3m, R_{out} = 3.34m, length = 2.67*2=5.34m, N_{layer}=40 Area of HCAL barrel = 2*PI*[(R_{in}+R_{out})/2]*L*N_{layer} = 3782 m²

- HCAL Endcap (2), R _{in} = 0.35m, R _{out} = 3.34m, N _{layer} =40	
Area of HCAL endcap = $2*PI*(R_{out}*R_{out} - R_{in}*R_{in})*N_{layer} = 2772 m$	1 ²

Cell Size \ channels	HCAL Barrel	HCAL Endcap	Channels (N _{ch})	Power AHCAL	Power SDHCAL
1cm x 1cm	37.82M	27.72M	65.5M		101 kW
2cm x 2cm	9.455M	6.93M	16.4M		52 kW
3cm x 3cm	4.2M	3.08M	7.3M	110 kW	43 kW
4cm x 4cm	2.36M	1.73M	4.1M	88 kW	
5cm x 5cm	1.51M	1.11M	2.6M	77 kW	

Power Consumption (rough estimation):

AHCAL: $7mW/ch * N_{ch3} + 9W/DIF/m^2 * 6554 (59kW)$ SDHCAL: $1mW/ch * N_{ch1} + 5.4W/DIF/m^2 * 6554 (35.4kW)$

Active cooling is likely needed.

2019/4/29

Electronics channels / m²

→ SDHCAL for CEPC has 40 layers

+ 1.6 mm ASIC (Hardroc)

→ 20mm steel absorber (2.5+2.5+15mm)

Each layer: 3 mm RPC

+ 1.2 ~ 1.4 mm PCB

(0. $12\lambda_I$, 1. $14X_0$) Stainless steel Absorber(15mm) Stainless steel wall(2.5mm) GRPC(6mm $\approx 0 \lambda_I, X_0$)

Stainless steel wall(2.5mm)

- → 6 PCB to cover 1m² RPC
- → Each PCB size: 31 cm * 50cm ~ 1536 channels
- → ASIC chip (Hardroc) has 64 channels, 4.3mm*4.7mm, cover (2.8cm*2.8cm)
- → Each PCB with 1536-channel needs 24 ASIC chips (4*6)
- → Power: 1mW/ch * 64 ch = 964 mW/Chip
- → Power: 1mW/ch * 6*24*64 ch = 1mW/ch*9216ch/m² = 9.2W/m²

PCB with ASICs

→ Each PCB size: 31 cm * 50cm
→ 24 ASIC * 64 ch = 1536 ch

➔ 6 PCB to cover 1m² RPC

→ Each PCB has 24 ASICs and 1536-ch

Geometry with 5-Layer

Simulation vs Measurements

Temperature [C]

19.237

17.8250

15 0000

IPNL+SJTU

Temperature Simulation:

- PCB+ASIC: 18.6 20.3 °C
- ∆T: 1.5°C

Simulation at SJTU

ASIC: 20.3 °C

Temperature Measurements:

- PCB+ASIC: 18 − 19 °C
- ∆T: 1.0 °C

Measured at IPNL

Initial temperature: 15°C, convection parameter: 3W/(K*m²) Simulation with Icepak

Low temperature at the gap region between two PCBs

2019/4/29

Simulation Results: 5-Layer

Increase the Layer of RPC on HCAL

- Ambient Temperature:15°C
- Linearity increase of Temp but will not always increase when layer increase

Comparison between with different air gaps IPNL+SITU

- **Ambient Temperature: 15°C** \bullet
- Here the are gaps means the gap between the stainless steel absorber and supporter layer(the holder box)
- The temp Increases first and then declines

Results with copper plates

- Green Line: The 2.5mm stainless steel absorber is replaced by 2mm copper plates
- Blue Line: The 4mm copper plates are putted on the top face
- Comparison of maximum Temp with/without copper plates

Highest temperature of layers

Different Water Flow velocity

Flow velocity 0.1m/s

Flow velocity 0.5m/s

- One layer
- Water cooling
- Higher rate, lower temperature

Different Co2 Flow velocity

Flow velocity 0.1m/s

Flow velocity 0.5m/s

- One layer
- Co2 cooling
- Water cooling is more efficient

Add 4mm copper absorber plates and one water tube in third layer

IPNL+SJTU

layer

Add 4mm copper absorber plates and water tubes in those plates

IPNL+SJTU

2019/4/29

,

We put water pipe inlaid in the third layer's absorber

IPNL+SJTU

31

absorber layer

2019/4/29

We put water pipe in all absorber layers

Temperature [C] Temperature [C] 8.3631 18.3631 7.9427 17.9427 7.5223 17.5223 7.1019 17.1019 16.6815 16.6815 16.2611 16.2611 15.8407 15.8407 15,4203 0,005 14,9999 15,4203g.2.1 Layer 5 Layer 4 Temperature [C] Temperature [C] 8.3631 8.3631 17.9427 17.9427 17.5223 17 5223 17.1019 17.1019 16.6815 16.6815 16.2611 16,2611 5.8407 15.8407 15,4203 0,025,00 14,9999 15,4203g.2.1 Layer 3 Layer 2 ing 1.1 Temperature [C] 18.3631 17.9427

17.5223

17.1019

16.6815 16.2611 15.8407

15.4203 doebing.2.1 14.9999

Layer 1

- Water cooling
- **5** layers in simulation
- 1m/s•
- Flow path: from bottom to top
- 5 water tubes in all absorber layers

1.

32

The comparison with two methods

- **Right: water plates in the absorber layer**
- Left/method is better

The gravity influence on temperature

Gravity perpendicular to PCB plane

Gravity parallel to PCB plane

- The upper two graphs show the neighbouring air velocity disturbed by heat
- When parallel, around 2 degrees lower $^{\circ C}$

Highest temperature of layers

Results with Power Pulsing: 1% duty cycle

- 64mW/chip **→** 0.64mW/chip
- Temperature can be well controlled in power pulsing mode

Layer	Highest T (°C)	Lowest T (°C)	Standard deviation (°C)
1	15.1900	15.1112	0.00724
2	15.2025	15.1208	0.00746
3	15.2047	15.1231	0.00740
4	15.1966	15.1185	0.00702
5	15.1784	15.1067	0.00635

Physics motivation of the scintillator test system

- Scintillator batch test for AHCAL
- Measure the fluorescence yield of scintillator through the beta-ray radiated from Sr90
- Radioactive source can move in x-y plane hanged by mechanical arm
- Plastic scintillators are placed on a specialized PCB
- The whole system need to be placed within a dark , no dust environment

Overview of the scintillator test system

- The outer box has been finished
- 1200mm*1185mm*620mm
- Those holes in the front are prepared for future cables from PCB

The system will realize

- PCB size: 60cm*60cm , each batch we could place 360 scintillators, 1min*360 = 6h/batch
- control on the computer

The design of structure

- the slipway should be longer? 1000mm?
- Depends on the size of PCB
- Even though the pcb design not fixed, we can still place an overplate on drawer
- To avoid reflect light: all those apparatuses in the box should be black

Requirements of each apparatuses

If slipway length: X and Y direction ~ 800mm, Z ~ 5mm, then: Servo motor: 0.2kW Install the steel ball guide rail on the drawers' two sides

Requirements of each apparatuses

Left : Control by computer, choose this method! Right: Control by touch screen

Budget of control and power system and questions USTC+SJTU

序号	名称	品牌	数量	单价(元)	合计 (元)	쑙	注
1	伺服电机(0.2KW)	日本三菱	3	2250	7050		
2	商柔性联轴器	国产	3	2350	1050		
3	PLC (FX5U)	日本三菱	1	2850	2850		
4	光电开关	欧姆龙/松下	9	100	900		
5	开关电源	明纬	1	300	300		
6	2P 空开带漏保	施耐德	1	200	200		
7	1P 空开	施耐德	4	60	240		
8	滤波器	国产	4	50	200		
9	继电器	欧姆龙	10	20	200		
10	电源开关	施耐德	1	200	200		
11	电控箱	国产定制	1	1000	1000		
12	端子排+线+其 他	国产	1	500	500		
13	安装调试费,运费				4000		
13	电气图纸,电气设 计费				3000		
	合计				20640		
	税				2680	1	3%
	合计				23323		

Total price : Box 18000+ holder 3000+23323+slipway 4000+other 3000 ~ 51323

Emitter size? HCAL PCB size?

Summary and Future Plans

- Active cooling is needed for CEPC calorimeters operating at continuous mode
- Simulation results are comparable to measured temperature on PCB and Chips.
- Temperature goes higher with multi-layer structure
- Copper plates help to extract heat from the structure
- Water cooling helps to extract addition heat
- The slipway installation of batch test system are under consideration now.

Future Plans:

- Design cooling system for both ECAL and HCAL
- To build multi-layer cooling module with copper plate and tubes, use water or evaporative CO₂ as cooling agent₄₃

Active Cooling

- CEPC is designed to operate at continuous mode with beam crossing rate: 2.8×10⁵ Hz. Power pulsing will not work at CEPC.
- Compare to ILD, the power consumption of VFE readout electronics at CEPC is about two orders of magnitude higher, hence it requires an active cooling
 - Evaporative CO₂ cooling in thin pipes embedded in Copper exchange plate.
 - For CMS-HGCAL design: heat extraction of 33 mW/cm², allows operation with 6×6 mm² pixels with a safety margin of 2
- > To be modelled for Mokka simulation

Transverse view of the slab with one absorber and two active layers.

➔ The silicon sensors are glued to PCB with VFE chips, cooled by the copper plates with CO₂ cooling pipes.

Simulation setup

- Turbulent mode
- Radiation: all solids
- Air flow: triggered by gravity
- Convection: natural convection
- Heat source: 64mW per chip /0.64mW

Thermal conductivity:

- absorber: stainless steel 14.4W/(m*K)
- RPC: glass 1.5W/(m*K)
- PCB: FR-4 0.35W/(m*K) copper 387.6W/(m*K)
- ASIC: silicon 180W/(m*K)

Geometry with Copper Plates

Comparison with photos: DAQ

Icepak vs steady-state thermal

higher resolution on chips

Icepak vs photo

 similar temperature difference between ambient and electronics

DAQ

- both uniformed distribution on PCB
- a greater heat source in photo

Particle Flow Algorithm

thin active medium

Requirements for detector system

- \rightarrow Need excellent tracker and high B field
- \rightarrow Large R_I of calorimeter
- \rightarrow Calorimeter inside coil
- \rightarrow Calorimeter as dense as possible (short X₀, λ_1)
- → Calorimeter with **extremely fine segmentation**

SDHCAL based on RPC

Electronics Readout

ASICs : HARDROC2 64 channels Trigger less mode Memory depth : 127 events **3 thresholds** Range: 10 fC-15 pC Gain correction \rightarrow uniformity

Printed Circuit Boards (PCB) were designed to reduce the cross-talk with 8-layer structure and buried vias.

Tiny connectors were used to connect the PCB two by two so the 24X2 ASICs are daisychained. $1 \times 1m^2$ has 6 PCBs and 9216 pads.

DAQ board (DIF) was developed to transmit fast commands and data to/from ASICs.

Readout ASIC

Readout ASIC	Channels	Dynamic Range	Threshold	Consumption
GASTONE	64	200fC	Single	2.4mW/ch
VFAT2	128	18.5fC	Single	1.5mW/ch
DIRAC	64	200fC for MPGD	Multiple	$1 \text{mW/ch}, 10 \mu \text{W/ch}$
DCAL	64	20fC~200fC	Single	
HARDROC2	64	10fC~10pC	Multiple	$1.42 \text{mW/ch}, 10 \mu \text{W/ch}$
MICROROC	64	1fC~500fC	Multiple	335µW/ch, 10µW/ch

Considered the multi-thresholds readout, dynamic range and power consumption, MICROROC is an appropriate readout ASIC

MICROROC Parameters

- □ Thickness: 1.4mm
- □ 64 Channels
- □ 3 threshold per channel
- □ 128 hit storage depth
- □ Minimum distinguishable
 - charge:2fC

Active Cooling on RPC+PCB

PCB with ASICs

→ ASIC chip (Hardroc) has 64 ch, 2413mm*4.7mm, cover (2.8cm*2.8cm) ➔ Thick of stainless steel box is 2.5mm in each side, gap is 7mm (RPC+PCB+ASIC=6mm) 54

Choice of Material

Material	Thermal Conductivity [W / (m K)]	Price (\$/lb)
Stainless Steel	16	1
Aluminum	205	1
Cooper	401	2.8
Silver	429	230
Water	0.606	-
Air	0.0262	-

Cooper or Aluminum has good thermal conductivity and reasonable price !

2019/4/29