Search for $X(3872) \rightarrow \pi^0 \pi^0 \chi_{cJ}$

Ryan Mitchell Joshua Jackson Indiana University

June 2019

Motivation

- Explore evidence for opposing interpretations of X(3872).
 - If X(3872) is a charmonium state¹:
 - Expect two-pion transitions to χ_{cJ} from X(3872) to be enhanced relative to single-pion transitions (by a factor of 25).
 - Expect production of χ_{c1} to be dominant with $\Gamma(X(3872) \to \pi^0 \pi^0 \chi_{c1}) \sim 1 \text{keV}$.
 - If X(3872) is a tetraquark:
 - Expect production of χ_{c1} and χ_{c2} to be similar, χ_{c0} to be strongly suppressed¹.
 - Expect two-pion transition to χ_{cJ} from X(3872) to be on same order as single-pion transition².

¹ S. Dubynskiy and M. B. Voloshin. "Pionic transitions from X(3872) to χ_{cI} ". In: *Phys. Rev. D* 77 (1 Jan. 2008), p. 014013.

² Sean Fleming and Thomas Mehen. "Hadronic decays of the X(3872) to χ_{cI} in effective field theory". In: *Phys. Rev. D* 78 (9 Nov. 2008), p. 094019.

Final State

$$e^+e^- \to \gamma X(3872)$$

 $X(3872) \to \pi^0 \pi^0 \chi_{cJ}$
 $\chi_{cJ} \to \gamma J/\psi$
 $J/\psi \to l^+l^-$

Final State: $l^+l^-\gamma\gamma\pi^0\pi^0$

Four different types of MC were generated.

Y(4260) without ISR

•
$$e^+e^- \rightarrow \omega \chi_{cJ}$$

•
$$e^+e^- \rightarrow \eta J/\psi$$

•
$$e^+e^- \rightarrow \eta'J/\psi$$

Y(4260) with ISR

•
$$e^+e^- \rightarrow \pi\pi J/\psi$$

ISR where $e^+e^- \rightarrow \gamma \psi'$

$$X(3872)$$
 with $e^+e^- \to \gamma X(3872)$

•
$$X(3872) \to \pi^+\pi^- J/\psi$$

•
$$X(3872) \to \pi^0 \chi_{cI}$$

•
$$X(3872) \rightarrow \gamma \psi'$$

•
$$X(3872) \rightarrow \gamma I/\psi$$

•
$$X(3872) \rightarrow \omega I/\psi$$

Model background, including continuum, with J/ψ sideband: 35 MeV $< |M(l^+l^-) - M(J/\psi)| < 95$ MeV

Compatibility between MC and data was verified with an $\eta J/\psi$ cross check.

- Want to verify that exclusive MC agrees with data.
 - Use all of the data with E^* between 4.15 GeV and 4.30 GeV.
- Check against $e^+e^- \to \eta J/\psi, \eta \to 3\pi^0$ and $e^+e^- \to \eta' J/\psi, \eta' \to \pi^0\pi^0\eta$
 - Roughly select $\chi^2/DOF < 10$ for kinematic fit.
 - Select $M(l^+l^-)$ within 30 MeV of J/ψ mass.
 - Select sideband with $M(l^+l^-)$ between 35 MeV and 95 MeV from J/ψ mass.
 - For $\eta J/\psi$, select $M(\gamma\gamma)$ within 10 MeV of π^0 mass.
 - For $\eta' J/\psi$, select $M(\gamma \gamma)$ within 50 MeV of η mass.
- This is the only time we look at data!

Compatibility between MC and data was verified with an $\eta J/\psi$ cross check.

Pre-selection Cuts

Center of Mass Energy:

$$4.15 \ GeV < E^* < 4.30 \ GeV$$

Shower Selection:

$$0 < T < 14$$

 $E_{endcap} > 50 \, MeV \, \text{or} \, E_{barrel} > 25 \, MeV$

Track Selection:

$$z < 10$$
 cm and $r < 1$ cm $|\cos \theta| < 0.93$

• Signal Region:

$$3.75 \ GeV < M_{recoil}(\gamma_1) < 4.00 \ GeV$$

 $3.35 \ GeV < M(\gamma_2 l^+ l^-) < 3.60 \ GeV$

Additional Cuts

• Electron Selection:

$$(E/p)^+ > 0.85 \text{ or } (E/p)^- > 0.85$$

Muon Selection:

$$(E/p)^+ < 0.25$$
 and $(E/p)^- < 0.25$

• J/ψ Selection:

$$|M(l^+l^-) - M(J/\psi)| < 30 \text{ MeV}$$

• J/ψ Sideband:

$$35 \text{ MeV} < |M(l^+l^-) - M(J/\psi)| < 95 \text{ MeV}$$

Phase Space

Signal MC

Background MC

Choosing the best χ_{cJ} combination

- Choose the best χ_{cJ} combination by selecting the $\gamma l^+ l^-$ combination which is closest to the PDG mass of χ_{cJ} in the appropriate J region.
- Only two possible combinations since we have two photons in the final state.

Without choosing best χ_{cJ} combination.

Choosing best χ_{cI} combination.

The broad χ_{cJ} region is split into three narrow regions corresponding to each J.

- Not sensitive to I=0
- *J* = 1: (3.49 GeV, 3.53 GeV)
- J = 2: (3.54 GeV, 3.58 GeV)

Choosing the best χ_{cJ} combination

- Choose the best χ_{cJ} combination by selecting the $\gamma l^+ l^-$ combination which is closest to the PDG mass of χ_{cJ} in the appropriate J region.
- Only two possible combinations since we have two photons in the final state.

Without choosing best χ_{cJ} combination.

Choosing best χ_{cI} combination.

The broad χ_{cJ} region is split into three narrow regions corresponding to each J.

- Not sensitive to I = 0
- *J* = 1: (3.49 GeV, 3.53 GeV)
- J = 2: (3.54 GeV, 3.58 GeV)

Cut Optimization: Kinematic Fit χ^2/DOF

Cut Optimization: $\eta \to \gamma \gamma \pi^0 \pi^0$ Veto

Eliminates $e^+e^- \to \eta J/\psi$ events.

Cut Optimization: $\eta \rightarrow \gamma \gamma$ Veto

Eliminates $e^+e^- \rightarrow \eta'J/\psi$ events.

Cut Optimization: ψ' Veto

Eliminates $e^+e^- \to \pi\pi\psi'$ events.

The π^0 veto only diminishes the FOM.

Figure of Merit for $|M(\gamma_1\gamma_2)-M(\pi^0)|$

Thus we elect not to use the π^0 veto.

Signal Region

Includes all pre-selection cuts as well as:

- Kinematic Fit $\chi^2/DOF < 6$
- Veto $M(\gamma\gamma)$ within 20 MeV of η mass.
- Veto $M(\gamma\gamma\pi^0\pi^0)$ within 30 MeV of η mass.
- Veto $M(\gamma \gamma l^+ l^-)$ within 30 MeV of ψ' mass.
- Best χ_{cI} combination.

Predicts roughly:

- 13 signal events
- 11 background events

Signal Region

Includes all pre-selection cuts as well as:

- Kinematic Fit $\chi^2/D0F < 6$
- Veto $M(\gamma\gamma)$ within 20 MeV of η mass.
- Veto $M(\gamma\gamma\pi^0\pi^0)$ within 30 MeV of η mass.
- Veto $M(\gamma \gamma l^+ l^-)$ within 30 MeV of ψ' mass.
- Best χ_{cJ} combination.

^{*} FOM calculated near the signal peak: 3.85 GeV to 3.91 GeV

Sideband Check

 Compare data to MC in region defined by a recoil mass of 50 MeV or more from 3872 MeV in any direction.

- No data in mass region less than signal peak – agrees with MC.
- 4 events in viewing window greater than signal region
 - MC predicts roughly 9 events in this region.

Next Steps

- Perform toy fits using small portion of signal MC.
 - Use signal MC shape to fit signal peak.
 - Check for fit stability by varying which portion of signal MC we use.
- Approach committee before unblinding data.

Questions

References

 1 S. Dubynskiy and M. B. Voloshin. "Pionic transitions from X(3872) to χ_{cJ} ". In: *Phys. Rev. D* 77 (1 Jan. 2008), p. 014013. DOI: 10.1103/PhysRevD.77.014013. URL: https://link.aps.org/doi/10.1103/PhysRevD.77.014013.

² Sean Fleming and Thomas Mehen. "Hadronic decays of the X(3872) to χ_{cJ} in effective field theory". In: *Phys. Rev. D* 78 (9 Nov. 2008), p. 094019. DOI: 10.1103/PhysRevD.78.094019. URL: https://link.aps.org/doi/10.1103/PhysRevD.78.094019.