Updates on Inclusive Measurement of h_c(1¹P₁) in ψ(2S) decay

Marco Scodeggio G. Cibinetto, I. Garzia & G. Mezzadri

12 June 2019 Weekly Charmonium Meeting

Outline:

- Analysis summary:
 - Goal and Strategy
 - The Data Sets
 - Event Selection in a nutshell
 - Background Suppression
 - Efficiency and Resolution
- I/O Test
- Conclusions & Plans

In the beginning was the Word

1...

Goal	Strategy
Measure the $h_c(1P_1)$ features with higher precision wrt Phys. Rev. Lett. 104 Measurements of branching ratios $(\psi(2S) \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c)$ will be performed too Previous Analysis: 106M of $\psi(2S)$ events This Analysis: 450M of $\psi(2S)$ events	Reconstruction of the h_c mass from the π^0 recoiling mass, throughout two decay routesInclusive Decay $\psi(2S) \longrightarrow \pi^0 h_c$ Bigger sample Background dominatedE1 Tagged Decay $\psi(2S) \longrightarrow \pi^0 h_c, h_c \longrightarrow \gamma \eta_c$ Purer sample Less statistics

Through data sets all analyses are made

Signal MC

- How big? 2 samples of 300k events each
- **What?** MC simulations of the $\psi(2S) \rightarrow \pi^0 h_c$ decay and the $\psi(2S) \rightarrow \pi^{0}h_{c}$, $h_{c} \rightarrow y \eta_{c}$ decay chain

Data

How big?

- 2012 → ~ 340M events
- 2009 → ~ 106M events

What? Taken @ ψ (2S) resonance (on-peak)

Inclusive MC

- How big? 400M events (2012)
- **What?** MC simulation of $\psi(2S)$ resonance with its and its daughters main known decay modes

Continuum

- How big? 44 pb⁻¹
- What? Continuum @ 3.650 GeV (off-peak)

Events selection in a nutshell

Charged Tracks

Vertex: $R_{xy} < 1 \text{ cm } \& R_z < 10 \text{ cm}$ Polar angle: $|\cos \theta| < 0.93$ Momentum: p < 2.0 GeV

Event

At least 2 good charged tracks $\psi(2S) \rightarrow \pi^0 h_c$: At least 2 good photons $h_c \rightarrow \gamma \eta_c$: At least 3 good photons

Inclusive

γ, from signal π_0 , must not belong to other π_0 M_{yy} invariant mass constrained to the π_0 nominal one by a 1-C kinematic fit

$\label{eq:photons} \begin{array}{l} \mbox{Photons} \\ \mbox{Isolation: } \Delta(\Omega) > 10^{\circ} \\ \mbox{EMC Time Info: } 0 \leq t \leq 14 \\ \mbox{E}_{\gamma} \mbox{(Barrel)} > 25 \mbox{ MeV}, \mbox{|cos θ|} < 0.80 \\ \mbox{E}_{\gamma} \mbox{(End Caps)} > 50 \mbox{ MeV}, \mbox{0.86} < \mbox{|cos θ|} < 0.92 \end{array}$

Recoiling π^{0}

y in the Barrel ($|\cos \theta| < 0.8$) $E_{\gamma} > 40 \text{ MeV}$ 120 MeV < $M_{\gamma\gamma} < 145 \text{ MeV}$

E1 Tagged

 $\begin{array}{l} 465 \; \text{MeV} < \text{E}_{\gamma \; \text{Tag}} < 535 \; \text{MeV} \\ \gamma_{\text{E1}} \; \text{must not to form a } \pi_0 \; \text{with any other } \gamma \\ \text{If more than one } \pi_0 \; \text{is found in the signal region the} \\ \pi_0 \; \text{with the best 1-C fit } \chi^2 \; \text{is kept} \end{array}$

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 1

Background Suppression

From Inclusive MC:

- i. $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$
- ii. $\psi(2S) \rightarrow \pi^0 \pi^0 J/\psi$
- iii. $\psi(2S) \rightarrow \gamma \chi_{c^0}$

i. & ii. Studied to define vetoing windows.

iii. Not a problem, because the γ recoiling energy is not in the signal range (465 MeV < $E_{\gamma \, Tag}$ < 535 MeV). However, as a sanity check, the $\psi(2S) \rightarrow \gamma \, \chi_c{}^0$ decay (and its subsequent $\chi_c{}^0 \rightarrow \pi{}^0 \, \eta_c$) was studied to search for resonant features. Nothing but a typical combinatorial shape was found.

 $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$ $M(J/\psi) \pm 5 MeV$ $\psi(2S) \rightarrow \pi^0 \pi^0 J/\psi$

 $M(J/\psi)^{+15 \text{ MeV}}_{-45 \text{ MeV}}$

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June 2019 - Weekly Charmonium

Efficiency Study Tagged Channel

Signal MC Sample of 300k events

Decay psi(2S)

1.0000 h_c pi0 HELAMP 0 0 1 0 0 0; Enddecay

Decay h_c 1.0000 gamma eta_c AngSam 1.0 1.0; Enddecay

	$\pi^0 \mathbf{h}_c, \mathbf{h}_c \to \gamma \eta_c \ (\%)$	ψ (2S) \rightarrow	Cut
	89.09		$N_{Good\ Ch} \geq 2$
	88.07		$N_{Good \gamma} \geq 2$
	87.46		$0.6~{ m GeV} \le { m E}_{EMC} \le 3.2~{ m GeV}$
Einal	66.92		Good π^0
Efficiency	15.61		Tagged selection (with $\pi\pi J/\psi$ veto)

End

Efficiency Study Inclusive Channel

Signal MC Sample of 300k events

Decay psi(2S) 1.0000 h_c pi0 HELAMP 0 0 1 0 0 0; Enddecay End

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June

Resolution Study Tagged Channel

- Signal shape:
 - Sum of Gaussian (Detector Resolution) and Crystalball (Reconstruction) functions, with the tail of the Crystalball on the right due to recoil energy of π^0
- Resolution: 2.7 MeV
- The reconstruction induced background (here modeled by a 1st order Chebychev function) is absorbed by the background in the inclusive MC/data

Resolution Study Inclusive Channel

- Signal shape:
 - Sum of Gaussian (Detector Resolution) and Crystalball (Reconstruction) functions, with the tail of the Crystalball on the right due to recoil energy of π^0
- Resolution: 2.7 MeV
- The reconstruction induced background (here modeled by a 1st order Chebychev function) is absorbed by the background in the inclusive MC/data

I/O Test Fit Procedure

Fit each binned (1 bin/MeV) channel (Inclusive and Tagged) separately, where:

- In the Tagged channel, the $\rm h_{c}$ mass and width, and the background parameters are allowed to float;
- In the **Inclusive channel**, the h_c mass and width are fixed to the values found in the Tagged channel, while the background parameters are fixed to the ones found in the background study.

I/O Test Background Tagged Channel = Inclusive MC + if(!h_ && !ŋ_)

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June 2019 - Weekly Charmonium

I/O Test Tagged Channel

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June 2019 - Weekly Charmonium

I/O Test Background Inclusive Channel = Inclusive MC + if(!h_)

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June 2019 - Weekly Charmonium

I/O Test **Inclusive Channel**

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

I/O Test Results

Feature [unit of measurement]	Input	Tagged	Inclusive	$\Delta(O-I)[\sigma]$
$M(h_c) [MeV]$	3525.93	3526.04 ± 0.06		1.83
$\Gamma(h_c) [MeV]$	1.00	1.43 ± 0.30		1.43
$\mathcal{B}_1(\psi(2\mathrm{S}) \to \pi^0 \mathrm{h}_c) \times \mathcal{B}_2(\mathrm{h}_c \to \gamma \eta_c) \ [10^{-4}]$	4.34	$3.72 {}^{+ 0.25}_{- 0.24}$		2.50
$\mathcal{B}_1(\psi(2S) \to \pi^0 h_c) \ [10^{-4}]$	8.51		7.83 ± 0.26	2.67
$\mathcal{B}_2(\mathbf{h}_c \to \gamma \eta_c) \ [\%]$	51		$47.51 \ {}^{+ \ 3.59}_{- \ 3.48}$	0.99

Conslusions & Plans

Acceptable I/O

(output features < 3σ from the input values)

Memo is up to date

Will proceed to analyze the continuum and the 2012 data, as well as the 2009 Efficiency, I/O and data

Expected to present the full analysis (without the systematic errors) and to upload the Memo in the hypernews in time for the Shanghai parallel Charmonium session

Thanks for your altention

BACK UP SLIDES

Charmonium Spectroscopy $h_{c}(1^{1}P_{1})$

Mass [MeV]	Width [MeV]	$\Delta_{hyp} [\text{MeV}]$	Experiment
$3525.4 \pm 0.8 \pm 0.4$	-	-	R704
$3526.28 \pm 0.18 \pm 0.19$	< 1.1	-	$E760^*$
3527 ± 8	-	-	E705
$3524.4 \pm 0.6 \pm 0.4$	-	$1.0\pm0.6\pm0.4$	CLEO-c
$3525.8 \pm 0.2 \pm 0.2$	$0.5 < \Gamma < 1.1$	-	$E835^*$
$3525.20 \pm 0.18 \pm 0.12$	-	$0.02 \pm 0.19 \pm 0.13$	$CLEO-c^*$
3525.6 ± 0.5	-	-	CLEO-c
$3525.40 \pm 0.13 \pm 0.18$	< 1.44	$-0.10 \pm 0.13 \pm 0.18$	BESIII*
$3525.31 \pm 0.11 \pm 0.14$	$0.70 \pm 0.28 \pm 0.22$	$-0.01 \pm 0.11 \pm 0.15$	BESIII*

Baglin et al., Phys. Lett. B 171, Issue 1 T.A. Armstrong et al., Phys. Rev. Lett. 69, 2337 L. Antoniazzi et al., Phys. Rev. D 50, 4258 J. L. Rosner *et al.*, Phys. Rev. Lett. 95, 102003 M. Andreotti et al., Phys. Rev. D 72, 032001 S. Dobbs et al., Phys. Rev. Lett. 101, 182003 G. S. Adams et al., Phys. Rev. D 80, 051106 V. Ablikim et al., Phys. Rev. Lett. 104, 132002 M. Ablikim et al., Phys. Rev. D 86, 092009

Summary of the h_c mass and width measurements. The * represents the measurements used by the PDG "for averages, fits, limits, etc.".

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

Branching Ratios

Signal

 $\psi(2S) \to \pi^0 h_c \qquad \qquad \mathcal{BR} = (8.6 \pm 1.3) \times 10^{-4} \\ h_c \to \gamma \eta_c \qquad \qquad \mathcal{BR} = (51 \pm 6) \%$

Background

$\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$	$\mathcal{BR} = (34.49 \pm 0.30) \%$
$\psi(2S) ightarrow \pi^0 \pi^0 J/\psi$	$\mathcal{BR} = (18.17 \pm 0.31) \%$
$\psi(2S) \to \gamma \chi_{c0}$	$\mathcal{BR} = (9.99 \pm 0.27) \%$

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June 2019 - Weekly Charmonium

General Selection Criteria

General Selection Criteria

Neutral Candidates

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June 2019 - Weekly Charmonium

General Selection Criteria Energy Cuts

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

General Selection Criteria

Number of Good Charged Tracks and Good Neutral Candidates

* Data —— Incl. MC

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June 2019 - Weekly Charmonium

Recoiling π⁰ Selection

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

Recoiling π⁰ Selection

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June 2019 - Weekly Charmonium

Background evaluation & Suppression $\psi(2S) \rightarrow \pi^{+} \pi^{-} J/\psi$

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June 2019 - V

Background evaluation & Suppression $\psi(2S) \rightarrow \pi^{0} \pi^{0} J/\psi$

M. Scodeggio - Updates on Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay 12 June 2019 - Weekly Charmonium

