$J/\psi \longrightarrow \Delta^{++}\overline{\Delta}^{--}$ $\psi(2S) \longrightarrow \Delta^{++}\overline{\Delta}^{--}$

$p\pi^+ \longrightarrow \bar{p}\pi^-$

TASAWER SHAHZAD AHMAD, HARIS RASHID, TALAB HUSSAIN Charmonium Group Meeting

Data Samples

- 1310.6 Million and 447 Million data samples were used to study the $J/\psi \longrightarrow \Delta^{++}\overline{\Delta}^{--}$ and $\psi(2S) \longrightarrow \Delta^{++}\overline{\Delta}^{--}$ respectively.
- The sample of 100000 events was generated by using phase space model in case of signal Monte Carlo.
- 1225 Million and 500 Million inclusive MC data samples were used for the background studies of $J/\psi \rightarrow \Delta^{++}\overline{\Delta}^{--}$ and $\psi(2S) \rightarrow \Delta^{++}\overline{\Delta}^{--}$ respectively.
- Monte Carlo (MC) samples and real data were reconstructed with the help of BOSS version 664p01

Event Selection

To select 4 good charged tracks the Initial event selection criteria is:

- > Range of polar angle in MDC i.e. $|\cos\theta| < 0.93$ with mfit=2.
- > The requirements for the vertex is $V_r = \sqrt{V_x^2 + V_y^2} < 10 \text{ cm and } V_z < 15 \text{ cm.}$
- > The threshold value of transverse momentum of each track should be 0.07 GeV i.e., $Pxy \ge 0.07$ GeV.
- > Tracks can be identified by the calculation of energy loss and TOF.
- > The energy loss dE/dx in MDC and TOF information were used to identify a particle.

Particle Identification

• Particle identification was performed to get events each having one Proton, one anti-Proton, one π + and one π -, by using the combined information of dE/dx and TOF. For this purpose the following $\chi 2$ values were used.

$$\chi^{2}_{TOF}(i) = \frac{TOF_{measured}(i) - TOF_{expected}(i)}{\sigma_{TOF}(i)}$$

• The $\chi 2$ is assigned to each charged track and is used to decide the type of the particle after applying the following conditions.

- To identify the positively charged proton, the following inequality relation was required to be satisfied.
- $\chi^2(P) < \chi^2(\pi^+)$ and $\chi^2(P) < \chi^2(K^+)$
- Positively charged pion was identified through the following inequality.
- $\chi^2(\pi^+) < \chi^2(P)$ and $\chi^2(\pi^+) < \chi^2(K^+)$
- Following inequality was used to identify the negatively charged anti-proton.
- $\chi^2(\bar{P}) < \chi^2(\pi^-)$ and $\chi^2(\bar{P}) < \chi^2(K^-)$
- Negatively charged pion was identified with the help of the following inequality.
- $\chi^2(\pi^-) < \chi^2(\bar{P})$ and $\chi^2(\pi^-) < \chi^2(K^-)$

The successful event after particle identification contains one proton, one anti-proton, a positive pion and a negative pion.

Kinematic Fit

- To conserve total momentum and energy, we applied 4C kinematic fit. Important information related to final state particles and their parent resonant particles such as invariant mass of $P\pi^+$ and $\overline{P}\pi^-$ to reconstruct Δ^{++} and $\overline{\Delta}^{--}$ was saved after 4C fit.
- Such criteria were used on all selected signal MC events, inclusive MC events, exclusive background MC events and real data events to get events.

FINAL EVENT SELECTION

- The following constraints were used
- 3σ mass constraints, decay length ratio cuts for Δ^{++} and $\overline{\Delta}^{--}$ and $\chi^2 _ 4C$ cut which was optimized through maximizing the ratio of MC signal and signal plus background from real data.
- To obtain good signals of Δ⁺⁺ and Δ⁻⁻ from real data through invariant mass distributions of Pπ⁺ and Pπ⁻ in the presence of small background was the main objective of these constraints.

Final Cuts

- In addition to $\chi 2_{4c}$ constraint, the following constrains were also applied to obtain final plot of $P\pi^+$ invariant mass distribution.
- $|M_{\bar{p}\pi^-} M_{\overline{\Delta}^{--}}| < 0.2140$
- $|M_{p\pi^-} M_{\Lambda}| > 0.015$
- $\left|M_{\bar{p}\pi^+} M_{\bar{\Lambda}}\right| > 0.015$
- $|M_{p\pi^-} M_{\Delta^0}| > 0.27$
- $\left|M_{\bar{p}\pi^+} M_{\overline{\Delta}^0}\right| > 0.27$
- $|M_{\pi^+\pi^-} M_{\omega^0}| > 0.031$
- $\left| M_{\pi^+\pi^-} M_{\rho^0} \right| > 0.03$
- $|M_{\pi^+\pi^-} M_{f_2}| > 0.21$

• Decay Length Ratio = $\left| \frac{\text{Decay Length of } \Delta^{++}}{\text{Decay Length Error of } \Delta^{++}} \right| > 3$

- In addition to χ^2_4c constraint, the following constrains were applied to obtain final plot of $P\pi^-$ invariant mass distribution.
- $|M_{p\pi^+} M_{\Delta^{++}}| < 0.2140$
- $|M_{p\pi^-} M_{\Lambda}| > 0.015$

•
$$\left|M_{\bar{p}\pi^+} - M_{\bar{\Lambda}}\right| > 0.015$$

- $|M_{p\pi^-} M_{\Delta^0}| > 0.27$
- $\left|M_{\bar{p}\pi^+} M_{\overline{\Delta}^0}\right| > 0.27$
- $|M_{\pi^+\pi^-} M_{\omega^0}| > 0.031$
- $\left| M_{\pi^+\pi^-} M_{\rho^0} \right| > 0.03$

•
$$|M_{\pi^+\pi^-} - M_{f_2}| > 0.21$$

• Decay Length Ratio = $\left| \frac{Decay Length of \overline{\Delta}^{--}}{Decay Length Error of \overline{\Delta}^{--}} \right| > 3$

χ^2 Optimization after 4C Fit

MC Proper Time Distribution

Data Proper Time Distribution

Statistical Significance

- To measure statistical significance, we made two maximum likelihood fits to each of the Δ^{++} and $\overline{\Delta}^{--}$ invariant mass distributions.
- First fit was made by using respective fixed Monte Carlo histogram as signal and the second fit was made by setting signal to zero (mean no signal function)
- In order to obtain the significance level, the values of log likelihood, obtained from the two fits were used in the following formula

$$S = \sqrt{|2lnL_{max}(s+b) - 2lnL_{max}(b)|}$$

• where $2\ln Lmax(s+b)$ represents the value of log likelihood obtained from first fit and $2\ln Lmax(b)$ represents the log likelihood value from second fit. The statistical significance of Δ^{++} and $\overline{\Delta}^{--}$ signals was determined to be 15.5 σ and 17 σ respectively.

Systematic Error Analysis

Sources of Uncertainty	Uncertainty(%)
MDC Tracking	8
Particle Identification	6
Hadron Interaction Models	1.27
4C Kinematic Fit	0
Intermediate Resonances	0
MC Statistics	0.18
Total Number of J/ψ Events	0.8
4C Vertex Fit	0
Total Uncertainty	10

Summary of the Systematic Error Analysis

Branching Fraction The Branching Fraction of J/ψ → Δ⁺⁺Δ⁻⁻can be determined by using the following relation

$$B(J/\psi \to \Delta^{++}\overline{\Delta}^{--}) = \frac{N_{Observed}}{\varepsilon N_{J/\psi} B(\Delta^{++} \to P\pi^{+}) B(\overline{\Delta}^{--} \to \overline{P}\pi^{-})}$$

- Where detection efficiency $\varepsilon = 50\%$. *NObserved* is the average of total number of observed signals equal to 559. Total number of J/ψ events $NJ/\psi = 1310.6$ Million. The Branching fractions of $B(\Delta + + \rightarrow P\pi +)$ and $B(\Delta - \rightarrow P\pi -)$ are equal to 0.994.
- $B(J/\psi \rightarrow \Delta^{++}\overline{\Delta}^{--}) = (0.86 \pm 0.08) \times 10^{-6}$

Background Analysis for $J/\psi \rightarrow \Delta^{++}\overline{\Delta}^{--}$

Background Channels	Ngenerated	Branching Fraction (10^{-3})	Nobserved
$J/\psi ightarrow \Lambda \overline{\Lambda}$	1×10^{5}	1.61 ± 0.15	0
$J/\psi ightarrow \Delta^{++} \overline{P} \pi^-$	1×10^{5}	1.6 ± 0.5	0
$J/\psi ightarrow \overline{\Delta}^{}P\pi^+$	1×10^5	—	0
$J/\psi ightarrow \Delta^0 \overline{\Delta^0}$	1×10^5	_	0
$J/\psi ightarrow \Delta^0 \overline{P} \pi^+$	1×10^5	—	1
$J/\psi ightarrow \overline{\Delta^0} P \pi^-$	1×10^5	_	1
$J/\psi ightarrow P\overline{P}\pi^+\pi^-$	1×10^{5}	6.0 ± 0.5	0
$J/\psi ightarrow P\overline{P}\omega$	1×10^{5}	0.98 ± 0.1	0
$J/\psi ightarrow P\overline{P} ho$	1×10^{5}	—	1
$J/\psi \rightarrow P\overline{P}f_2$	1×10^{5}	—	2

Table 5.1 The Exclusive Backgrounds Obtained for $J/\psi \to \Delta^{++}\overline{\Delta}^{--}$ Channel with $\Delta^{++} \to P\pi^+$ and $\overline{\Delta}^{--} \to \overline{P}\pi^-$.

The background channels were observed after the topological background study

Analysis of $\psi(2S) \rightarrow \Delta^{++}\overline{\Delta}^{--}$

- In addition to χ^2_4C constraint, the following constrains were applied to obtain final plot of $P\pi^+$ invariant mass distribution.
- $|M_{\bar{p}\pi^-} M_{\bar{\Delta}^{--}}| < 0.2140$
- $|M_{p\pi^-} M_{\Lambda}| > 0.015$
- $\left|M_{\bar{p}\pi^+} M_{\bar{\Lambda}}\right| > 0.015$
- $|M_{p\pi^-} M_{\Delta^0}| > 0.27$
- $\left|M_{\bar{p}\pi^+} M_{\overline{\Delta}^0}\right| > 0.27$
- $|M_{\pi^+\pi^-} M_{\omega^0}| > 0.031$
- $|M_{\pi^+\pi^-} M_{\rho^0}| > 0.03$
- $|M_{\pi^+\pi^-} M_{f_2}| > 0.21$

• Decay Length Ratio = $\left| \frac{\text{Decay Length of } \Delta^{++}}{\text{Decay Length Error of } \Delta^{++}} \right| > 3$

- In addition to χ^2_4c constraint, the following constrains were applied to obtain final plot of $P\pi^-$ invariant mass distribution.
- $|M_{p\pi^+} M_{\Delta^{++}}| < 0.2140$
- $|M_{p\pi^-} M_{\Lambda}| > 0.015$
- $\left|M_{\bar{p}\pi^+} M_{\bar{\Lambda}}\right| > 0.015$
- $|M_{p\pi^-} M_{\Delta^0}| > 0.27$
- $\left|M_{\bar{p}\pi^+} M_{\overline{\Delta}^0}\right| > 0.27$
- $|M_{\pi^+\pi^-} M_{\omega^0}| > 0.031$
- $\left| M_{\pi^+\pi^-} M_{\rho^0} \right| > 0.03$
- $|M_{\pi^+\pi^-} M_{f_2}| > 0.21$

• Decay Length Ratio = $\left| \frac{\text{Decay Length of }\overline{\Delta}^{--}}{\text{Decay Length Error of }\overline{\Delta}^{--}} \right| > 3$

MC Mass Distribution of $P\pi^+$

 χ^2 Optimization after 4C Fit

Decay Length Error

MC Proper Time Distribution

Data Proper Time Distribution

(a)

Statistical Significance

- To measure statistical significance, we made two maximum likelihood fits to each of the Δ^{++} and $\overline{\Delta}^{--}$ invariant mass distributions.
- First fit was made by using respective fixed Monte Carlo histogram as signal and the second fit was made by setting signal to zero (mean no signal function)
- In order to obtain the significance level, the values of log likelihood, obtained from the two fits were used in the following formula

$$S = \sqrt{|2lnL_{max}(s+b) - 2lnL_{max}(b)|}$$

• where $2\ln Lmax(s+b)$ represents the value of log likelihood obtained from first fit and $2\ln Lmax(b)$ represents the log likelihood value from second fit. The statistical significance of Δ^{++} and $\overline{\Delta}^{--}$ signals was determined to be 5.6 σ and 4.49 σ respectively.

Systematic Errors

Sources of Uncertainty	Uncertainty(%)
MDC Tracking	8
Particle Identification	6
Hadron Interaction Models	11
4C Kinematic Fit	0
Intermediate Resonances 0	
MC Statistics	0.23
Total Number of $\psi(2S)$ Events	0.6
4C Vertex Fit	0
Total Uncertainty	14.8

Summary of the Systematic Error Analysis

Branching Fraction

The Branching Fraction of $\psi(2S) \rightarrow \Delta^{++}\overline{\Delta}^{--}$ can be determined by using the following relation

$$B(\psi(2S) \to \Delta^{++}\overline{\Delta}^{--}) = \frac{N_{Observed}}{\varepsilon N_{\psi(2S)}B(\Delta^{++} \to P\pi^{+})B(\overline{\Delta}^{--} \to \overline{P}\pi^{-})}$$

Where Detection efficiency $\varepsilon = 52.8\%$. *NObserved* is total number of observed signals equal to 28. Total number of ψ events $N\psi = 448$ Million. The Branching fractions of B($\Delta + + \rightarrow P\pi +$) and B($\Delta - - \rightarrow P\pi -$) are equal to 0.994.

 $B(\psi(2S) \rightarrow \Delta^{++} \overline{\Delta}^{--}) {=} (1.07 {\pm} 0.16) {\times} 10^{-7}$

Background Estimation

Background Channels	Ngenerated	Branching Fraction (10^{-3})	Nobserved
$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$	1×10^{5}	1.61 ± 0.15	18
$\psi(2S) \rightarrow \Lambda \overline{\Lambda}$	1×10^{5}	1.61 ± 0.15	0
$\psi(2S) \rightarrow \Delta^{++} \overline{P} \pi^{-}$	1×10^{5}	1.6 ± 0.5	12
$\psi(2S) \to \overline{\Delta}^{} P \pi^+$	1×10^5	—	21
$\psi(2S) \rightarrow \Delta^0 \overline{\Delta}^0$	1×10^5	_	0
$\psi(2S) \rightarrow \Delta^0 \overline{P} \pi^+$	1×10^{5}	—	4
$\psi(2S) \rightarrow \overline{\Delta}^0 P \pi^-$	1×10^5	_	4
$\psi(2S) \rightarrow P\overline{P}\pi^+\pi^-$	1×10^{5}	6.0 ± 0.5	14
$\psi(2S) \to P\overline{P}\omega$	1×10^{5}	0.98 ± 0.1	0
$\psi(2S) \rightarrow P\overline{P}\rho$	1×10^{5}	—	4
$\psi(2S) \to P\overline{P}f_2$	1×10^5	—	9

The background channels were observed after the topological background study

Conclusion

- Through these analyses, it is found that the 12% rule is nearly obeyed by these channels i.e. The ratio of $\Psi(2S) \rightarrow \Delta^{++}$ $\overline{\Delta}^{--}$ and that of $J/\Psi \rightarrow \Delta^{++} \overline{\Delta}^{--}$ is about 12% $Q_h = \frac{1.07 \pm 0.16 \times 10^{-7}}{0.86 \pm 0.08 \times 10^{-6}} = 12.4\%$
- It is also found that our measured branching fractions are better than the PDG values of branching fractions of these decay channels by about of order three.
- With increased statistics of data at BESIII, these measurements can be further improved through their precision and accuracy.