

Study of $(J/\Psi,\Psi(2S)) \rightarrow \Lambda X$

Khadija Saeed, Haris Rashid, Abrar Ahmad Zafar, Talab Hussain Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan

> Charmonium Group Meeting April 17, 2019

Outline

- Overview
- Motivations
- Experiment Overview
- Data Analysis
- Results
- Conclusion

Motivations

- The isospin conserving modes containing baryon pair with meson has been reported in PDG, also some searches have been performed to explore isospin violation process.
- In this study we searched the violation process in two ways isospin and strangeness which is highly suppress but kinematic ally it is possible.
- To find any hint beyond the Standard Model of Particle Physics.
- This work is devoted to the analysis of $J/\psi, \psi(2S) \to \Lambda \overline{\Delta}, \Lambda \overline{\Sigma}, \Lambda \overline{\Xi}$ nd try to measure its branching fraction using the large statistics at BESIII

What is "X"

• Here X can be any anti baryon e.g $\overline{\Delta}$, $\overline{\Sigma}$, $\overline{\Xi}$. Here we will discuss these channels

$$J/\psi \to \Lambda \overline{\Delta}$$

$$\psi(2S) \to \Lambda \overline{\Delta}$$

$$J/\psi \to \Lambda \overline{\Sigma}$$

$$\psi(2S) \to \Lambda \overline{\Sigma}$$

$$J/\psi \to \Lambda \overline{\Xi}$$

$$\psi(2S) \to \Lambda \overline{\Xi}$$

Observation of $J/\psi \rightarrow \Lambda X$

This study is based upon two steps

- Monte Carlo (MC) simulations.
- Real data results
- Where real data contain $1.3 \times 10^9 J/\psi$ events and
- $= 4.4 \times 10^8 \ \psi(2S)$ events

MC simulation

 A MC sample of 100000 events is generated using different generators for each channel.

Event Selection for $J/\psi \rightarrow \Lambda \overline{\Sigma}$

There are 4 charge tracks in $J/\psi \to \Lambda \overline{\Sigma}$ as $\Lambda \to P\pi^-$ and $\overline{\Sigma} \to \overline{p}\pi^+\gamma$

Only those events are selected having

- nGood == 4
- number of $\chi == 1$
- nCharge == o

PID is applied to select events having 1 proton 1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of $\Lambda \rightarrow P\pi^-$ using kinematic fit for

 $J/\psi \to \Lambda \overline{\Sigma}$

MC and Data invariant mass of $\overline{\Sigma} \to \overline{p} \pi^+ \gamma$ using kinematic fit for

Background Analysis for $J/\psi \to \Lambda \overline{\Sigma}$

For final event selection we applied the following constraints to mass resolution of $\overline{\Sigma} \to \overline{p}\pi^+\gamma$.

- χ² < 40
- $|M_{p\pi^-} M_{\Lambda}| < 0.005$
- |M_{pπ-γγ}-M_Ξ| > 0.03532
- |M_{pπ-γ} M_Σ| > 0.03117
- $|M_{p\pi^-} M_{\Delta}| > 0.24$
- number of γ = 1
- Decay Length of Λ > 2
- Rxy < 4

MC and Data invariant mass of $\overline{\Sigma} \to \overline{p}\pi^+\gamma$ after applying cuts

Observed background channels for $J/\psi \to \Lambda \overline{\Sigma}$ using 10⁵ MC events

Background channel	Number of events	Normalized events	Branching fraction
$P\overline{P}\pi^+\pi^-$	0	0	$(6.0 \pm 0.5) \times 10^{-3}$
$P\overline{P}\omega$	0	0	$(9.8 \pm 1.0) \times 10^{-4}$
$\Delta^{++}\overline{P}\pi^{-}$	0	0	$(1.6 \pm 0.5) \times 10^{-3}$
$\Delta^{++}\overline{\Delta}^{}$	1	0	$(1.10 \pm 0.29) \times 10^{-3}$
$\Lambda\overline{\Lambda}$	4	2	$(1.61 \pm 0.15) \times 10^{-3}$
$P\overline{P}\rho$	1	0	$< 3.1 \times 10^{-4} \text{ CL} = 90$
$\Sigma^0\overline{\Sigma}^0$	23	9	116.4×10^{-3}

(a) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-}$ for $J/\psi \to \Lambda \overline{\Sigma}$. (b) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-}$ for $J/\psi \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0277$.

(a) Invariant mass distribution of $M_{P\overline{P}\omega}$ for $J/\psi \to \Lambda \overline{\Sigma}$. (b) Invariant mass distribution of $M_{P\overline{P}\omega}$ for $J/\psi \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{P}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0277$

(a) Invariant mass of $M_{\Delta^{++}\overline{P}\pi^{-}}$ for $J/\psi \to \Lambda \overline{\Sigma}$. (b) Invariant mass of $M_{\Delta^{++}\overline{P}\pi^{-}}$ for $J/\psi \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{P}\pi^{+}\gamma} - M_{\overline{\Sigma}}| < 0.0277$.

(a) Invariant mass of $M_{\underline{\Delta}^{++}\overline{\Delta}^{--}}$ for $J/\psi \to \Lambda \overline{\Sigma}$. (b) Invariant mass of $M_{\underline{\Delta}^{++}\overline{\Delta}^{--}}$ for $J/\psi \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0277$.

(a) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}}$ for $J/\psi \to \Lambda\overline{\Sigma}$. (b) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}}$ for $J/\psi \to \Lambda\overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0277$.

(a) Invariant mass distribution of $M_{P\overline{P}\rho}$ for $J/\psi \to \Lambda \overline{\Sigma}$. (b) Invariant mass distribution of $M_{P\overline{P}\rho}$ for $J/\psi \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{P}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0277$.

(a) Invariant mass distribution of $M_{\Sigma^0\overline{\Sigma}^0}$ for $J/\psi \to \Lambda\overline{\Sigma}$. (b) Invariant mass distribution of $M_{\Sigma^0\overline{\Sigma}^0}$ for $J/\psi \to \Lambda\overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0277$.

Fit result of $M(\overline{\Sigma} \to \overline{P}\pi^+\gamma)$

Calculated Branching Fraction for $J/\psi o \Lambda \overline{\Sigma}$

Formula for the calculation of Branching fraction is given bellow

$$B(J/\psi, \psi(2S) \to B\overline{B}) = \frac{N_{obs}}{N_{J/\psi, \psi(2S)} \times \varepsilon \times B_i}$$

Here N_{obs} , ε and B_i epresents number of observed signal events, detection efficiency and intermediate branching fraction . The calculated branching fraction is

$$B(J/\psi \to \Lambda \overline{\Sigma}) = (1.8 \pm 0.19) \times 10^{-6}$$

Initial Event Selection for $J/\psi \rightarrow \Lambda \overline{\Delta}$

There are 4 charge tracks in $J/\psi \to \Lambda \overline{\Delta}$ as $\Lambda \to P\pi^-$ and

$$\overline{\Delta} \to \overline{p} \pi^+$$

Only those events are selected having

- •nGood == 4
- •nCharge == o

PID is applied to select events having 1 proton 1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of $\Lambda \rightarrow P\pi^-$ using kinematic fit

MC and Data invariant mass of $\overline{\Delta} \to \overline{p}\pi^+$ using Kinematic fit

Final Event Selection for $\overline{\Delta} \rightarrow \overline{p}\pi^+$

Constraints applied on $J/\psi \to \Lambda \overline{\Delta}$ are

•
$$|M_{p\pi^-} - M_{\Lambda}| < 0.005$$

•
$$|M_{p\pi^-\gamma\gamma} - M_{\Xi}| > 0.03532$$

•
$$|M_{p\pi^-\gamma} - M_{\Sigma}| > 0.03117$$

- number of $\gamma = 0$
- Decay Length of Λ > 2
- Rxy < 4

MC and Data invariant mass of $\ \overline{\Delta} \to \overline{p} \pi^+$ after applying cuts

Sideband Analysis for $\overline{\Delta} \to \overline{p}\pi^+$

Upper Limit using Poisson Distribution

An important case: $n_{obs} = 0$

$$\beta = \sum_{n=0}^{0} \frac{b^n e^{-b}}{n!} = e^{-b} \rightarrow b = -\log \beta$$

Calculate an upper limit at confidence level $(1-\beta) = 95\%$

$$b = -\log(0.05) = 2.996 \approx 3$$

Useful table:

<i>m</i>	lower limit a			upper limit b		
$n_{ m obs}$	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.01$	$\beta = 0.1$	$\beta = 0.05$	$\beta = 0.01$
0	_	_	_	2.30	3.00	4.61
1	0.105	0.051	0.010	3.89	4.74	6.64
2	0.532	0.355	0.149	5.32	6.30	8.41
3	1.10	0.818	0.436	6.68	7.75	10.04
4	1.74	1.37	0.823	7.99	9.15	11.60
5	2.43	1.97	1.28	9.27	10.51	13.11

Calculated Upper Limit at 95% Confidence Level for $\overline{\Delta} ightarrow \overline{p} \pi^+$

Formula for the calculation of upper limit is given bellow

$$B(J/\psi, \psi(2S) \to B\overline{B}) < \frac{N_{obs}}{N_{J/\psi, \psi(2S)} \times \varepsilon \times B_i(1 - \sigma_{sys})}$$

Here N_{obs} , ε and B_i epresents number of observed signal events, detection efficiency and intermediate branching fraction . The calculated branching fraction is

$$B(J/\psi \to \Lambda \overline{\Delta}) < 1.1 \times 10^{-8}$$

Initial Event Selection for $J/\psi \rightarrow \Lambda \overline{\Xi}$

There are 4 charge tracks in $J/\psi \to \Lambda \overline{\Xi}$ as $\Lambda \to P\pi^-$ and $\overline{\Xi} \to \overline{p}\pi^+\gamma\gamma$

Only those events are selected having

- nGood == 4
- number of $\chi == 2$
- nCharge == o

PID is applied to select events having 1 proton 1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of $\Lambda \to p\pi^-$ using kinematic fit for $J/\psi \to \Lambda \overline{\Xi}$

MC and Data invariant mass of $\overline{\Xi} \to \overline{p}\pi^+\gamma\gamma$ using kinematic fit for $J/\psi \to \Lambda \overline{\Xi}$

Background Analysis for $J/\psi ightarrow \Lambda \overline{\Xi}$

Constraints applied on $J/\psi \to \Lambda \overline{\Xi}$ are

•
$$|M_{p\pi^-} - M_{\Lambda}| < 0.005$$

•
$$|M_{p\pi^-\gamma\gamma} - M_{\Lambda}| > 0.005$$

•
$$|M_{p\pi^-\gamma} - M_{\Sigma}| > 0.006$$

•
$$|M_{p\pi^-} - M_{\Delta}| > 0.008$$

- number of $\gamma = 2$
- Decay Length of Λ > 4
- Rxy < 4

MC and Data invariant mass of $\overline{\Xi} \to \overline{p}\pi^+\gamma\gamma$ after applying cuts

Observed background channels for $J/\psi \to \Lambda \overline{\Xi}$ using 10⁵ MC events

Background Channal	Number of events	Normalized events	Branching fraction
$\Lambda \overline{\Lambda}$	0	0	$(1.61 \pm 0.15) \times 10^{-3}$
$\Xi^{-}\overline{\Xi}^{+}$	0	0	$(8.6 \pm 1.1) \times 10^{-4}$
$\Lambda\overline{\Lambda}\eta$	1	0	$(1.62 \pm 0.17) \times 10^{-4}$
$\Lambda \overline{\Lambda} \pi^0$	1603	170	$(3.8 \pm 0.4) \times 10^{-5}$
$P\overline{P}\eta$	1	0	$(2.00 \pm 0.12) \times 10^{-3}$
$P\overline{P}\eta$	0	0	$(2.1 \pm 0.4) \times 10^{-4}$
$P\overline{P}\omega$	0	0	$(9.8 \pm 1.0) \times 10^{-4}$
$P\overline{P}\phi$	1	0	$(4.5 \pm 1.5) \times 10^{-5}$
$P\overline{P}\pi^+\pi^-$	0	0	$(6.0 \pm 0.5) \times 10^{-3}$
$P\overline{P}\pi^{+}\pi^{-}\pi^{0}$	10	0	$(2.3 \pm 0.9) \times 10^{-3}$
$P\overline{P}\rho$	0	0	$< 3.1 \times 10^{-4} \text{ CL } 90$
$\Sigma^0 \overline{\Sigma}^0$	3252	1213	$(1.29 \pm 0.09) \times 10^{-3}$
$\Sigma^{+}\overline{\Sigma}^{-}$	0	0	$(1.50 \pm 0.24) \times 10^{-3}$

(a) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}}$ for $J/\psi \to \Lambda\overline{\Xi}$. (b) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\overline{J}/\psi \to \Lambda\Xi$

(a) Invariant mass distribution of $M_{\Xi^-\overline{\Xi}^+}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{\Xi^-\overline{\Xi}^+}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $J/\psi \to \Lambda \overline{\Xi}$

(a) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}\eta}$ for $J/\psi \to \Lambda\overline{\Xi}$. (b) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}\eta}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $J/\psi \to \Lambda\overline{\Xi}$

(a) Invariant mass distribution of $M_{\Lambda \overline{\Lambda} \pi^0}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{\Lambda \overline{\Lambda} \pi^0}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\overline{J}/\psi \to \Lambda \Xi$

(a) Invariant mass distribution of $M_{P\overline{P}\eta}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\eta}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\overline{J}/\psi \to \Lambda \Xi$

(a) Invariant mass distribution of $M_{P\overline{P}\acute{\eta}}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\acute{\eta}}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $J/\psi \to \Lambda \overline{\Xi}$

(a) Invariant mass distribution of $M_{P\overline{P}\omega}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\omega}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\overline{J}/\psi \to \Lambda \Xi$

Invariant mass distribution of $M_{P\overline{P}\phi}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\phi}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $J/\psi \to \Lambda \overline{\Xi}$

(a) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\overline{J}/\psi \to \Lambda \Xi$

(a) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-\pi^0}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-\pi^0}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\overline{J}/\psi \to \Lambda \Xi$

(a) Invariant mass distribution of $M_{P\overline{P}\rho}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\rho}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $J/\psi \to \Lambda \overline{\Xi}$

(a) Invariant mass distribution of $M_{\Sigma^0\overline{\Sigma}^0}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{\Sigma^0\overline{\Sigma}^0}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\overline{J}/\psi \to \Lambda \Xi$

(a) Invariant mass distribution of $M_{\Sigma^+\overline{\Sigma}^-}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{\Sigma^+\overline{\Sigma}^-}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $J/\psi \to \Lambda \overline{\Xi}$

Sideband Analysis for $J/\psi \to \Lambda \overline{\Xi}$

Calculated Upper Limit at 95% Confidence Level for $J/\psi ightarrow \Lambda \overline{\Xi}$

Formula for the calculation of upper limit is given bellow

$$B(J/\psi, \psi(2S) \to B\overline{B}) < \frac{N_{obs}}{N_{J/\psi, \psi(2S)} \times \varepsilon \times B_i(1 - \sigma_{sys})}$$

Here N_{obs} , ε and B_i epresents number of observed signal events, detection efficiency and intermediate branching fraction . The calculated branching fraction is

$$B(J/\psi \rightarrow \Lambda \overline{\Xi}) < 8.9 \times 10^{-8}$$

The systematic errors for $J/\psi \to \Lambda \overline{\Delta}, \Lambda \overline{\Sigma}, \Lambda \overline{\Xi}$

Sources	% error for $\Lambda \overline{\Delta}$	% error for $\Lambda \Sigma$	% error for $\Lambda \Xi$
MDC Tracking	8	8	8
PID (Ablikim et al., 2017)	4	5	6
MC Model (Ablikim et al., 2017)	-	0.83	5.9
Statistical Error	0.16	1.78	0.27
$B(\Lambda \to P\pi^-)$ (Patrignani et al., 2016)	0.5	0.5	0.5
J/ψ number (Ablikim et al., 2017)	7.0	7.0	7.0
Kinematic fit for $\Lambda \overline{\Lambda}$	15	15	15
$\Lambda \rightarrow P\pi^-$	0.5	0.5	0.5
$\overline{\Sigma^0} \rightarrow \overline{p}\pi^+\gamma$	_	0	_
$\overline{\Xi} \to \overline{\Lambda} \pi^0$	_	_	0.012
Total error	18.83	19.166	20.23

Initial Event Selection for $\psi(2S) \to \Lambda \overline{\Delta}$

There are 4 charge tracks in $\psi(2S) \to \Lambda \overline{\Delta}$ as $\Lambda \to P\pi^-$ and

$$\overline{\Delta} \to \overline{p}\pi^+$$

Only those events are selected having

- •nGood == 4
- •nCharge == o

PID is applied to select events having 1 proton 1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of $\Lambda \to P\pi^-$ using kinematic fit for

$$\psi(2S) \to \Lambda \overline{\Delta}$$

MC and Data invariant mass of $\overline{\Delta} \to \overline{p}\pi^+$ using kinematic fit $\psi(2S) \to \Lambda \overline{\Delta}$

Background Analysis for $\psi(2S) \to \Lambda \overline{\Delta}$

Constraints applied on $\psi(2S) \to \Lambda \overline{\Delta}$ are

•
$$\chi^2 < 40$$

•
$$|M_{p\pi^-} - M_{\Lambda}| < 0.005$$

•
$$|M_{p\pi^-\gamma\gamma} - M_{\Xi}| > 0.03532$$

•
$$|M_{p\pi^-\gamma} - M_{\Sigma}| > 0.03117$$

- number of $\gamma = 0$
- Decay Length of Λ > 2
- Rxy < 4

MC and Data invariant mass of $\overline{\Delta} \to \overline{p}\pi^+$ after applying cuts

Sideband Analysis for $\psi(2S) \to \Lambda \overline{\Delta}$

Calculated Upper Limit at 95% Confidence Level for $\psi(2S) \to \Lambda \overline{\Delta}$

Formula for the calculation of upper limit is given bellow

$$B(J/\psi, \psi(2S) \to B\overline{B}) < \frac{N_{obs}}{N_{J/\psi, \psi(2S)} \times \varepsilon \times B_i(1 - \sigma_{sys})}$$

Here N_{obs} , ε and B_i epresents number of observed signal events, detection efficiency and intermediate branching fraction . The calculated branching fraction is

$$B(\psi(2S) \to \Lambda \overline{\Delta}) < 0.21 \times 10^{-7}$$

Event Selection for $\psi(2S) \rightarrow \Lambda \overline{\Sigma}$

$$\psi(2S) \to \Lambda \overline{\Sigma}$$

There are 4 charge tracks in $\,\Psi(2S) \to \Lambda \overline{\Sigma}\,$ as $\Lambda \to P\pi^-$ and $\overline{\Sigma} \to \overline{p}\pi^+\gamma$

Only those events are selected having

- nGood == 4
- number of $\chi == 1$
- nCharge == o

PID is applied to select events having 1 proton 1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of $\Lambda \to p\pi^-$ using kinematic fit for

MC and Data invariant mass of $\overline{\Sigma} \to \overline{p}\pi^+\gamma$ using kinematic fit for $\psi(2S) \to \Lambda \overline{\Sigma}$

Background Analysis for $\psi(2S) \to \Lambda \overline{\Sigma}$

Some cuts are applied to remove the background on both Monte carlo and data signals.

Cut applied on MC is

• including cut of Λ

Cut applied on real data signals are

•
$$\chi^2 < 40$$

•
$$|M_{\Lambda} - 1.1156| < 0.005$$

•
$$|M_{\Xi} - 1.31486| > 0.03532$$

•
$$|M_{\Sigma} - 1.11583| > 0.03117$$

•
$$|M_{\Delta} - 1.232| > 0.24$$

- no. of gamma == 1
- decay length ratio $\Lambda > 2$
- Rxy < 4

MC and Data invariant mass o $\overline{\Sigma} \to \overline{p}\pi^+\gamma$ after applying cuts for $\psi(2S) \to \Lambda \overline{\Sigma}$

Observed background channels for $\psi(2S) \to \Lambda \overline{\Sigma}$ after applying cuts

background channel	number of events	Normalized events	Branching fraction
$\Xi_{-}\overline{\Xi_{+}}$	0	0	$(2.64 \pm 0.18) \times 10^{-4}$
$P\overline{P}\eta$	2	0	$(6.0 \pm 0.4) \times 10^{-5}$
$\Lambda \overline{\Lambda} \pi^0$	3	0	$< 2.9 \times 10^{-6}$
$P\overline{P}\eta$	0	0	_
$P\overline{P}\omega$	2	0	$(6.9 \pm 2.1) \times 10^{-5}$
$P\overline{P}\pi^{+}\pi^{-}$	0	0	$(6.0 \pm 0.4) \times 10^{-4}$
$P\overline{P}\pi^+\pi^-\pi^0$	0	0	$(7.3 \pm 0.7) \times 10^{-4}$
$P\overline{P}\rho$	2	0	$(5.0 \pm 2.2) \times 10^{-5}$
$\Lambda\overline{\Lambda}\eta$	2	0	$(2.5 \pm 0.4) \times 10^{-5}$
$\Lambda \overline{\Lambda}$	5	0	$(3.57 \pm 0.18) \times 10^{-4}$
$\Sigma^0 \overline{\Sigma^0}$	5	0	$(2.32 \pm 0.16) \times 10^{-4}$

(a) Invariant mass distribution of $M_{\Xi^-\overline{\Xi}^+}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$. (b) Invariant mass distribution of background $M_{\Xi^-\overline{\Xi}^+}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$

(a) Invariant mass distribution of $M_{P\overline{P}\eta}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$. (b) Invariant mass distribution of $M_{P\overline{P}\eta}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$

(a) Invariant mass distribution of $M_{\Lambda \overline{\Lambda} \pi^0}$ for $\psi(2S) \to \Lambda \Sigma$ (b) Invariant mass distribution of $M_{\Lambda \overline{\Lambda} \pi^0}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$

(a) Invariant mass distribution of $M_{P\overline{P}\acute{\eta}}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$ (b) Invariant mass distribution of $M_{P\overline{P}\acute{\eta}}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$

(a) Invariant mass distribution of $M_{P\overline{P}\omega}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$. (b) Invariant mass distribution of $M_{P\overline{P}\omega}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$

(a) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$. (b) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{P}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$

(a) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-\pi^0}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$. (b) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-\pi^0}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{P}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$

(a) Invariant mass distribution of $M_{P\overline{P}\rho}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$. (b) Invariant mass distribution of $M_{P\overline{P}\rho}$ for $\psi(2S) \to \Lambda \overline{\Sigma}$ with mass window cut $|M_{\overline{P}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$.

(a) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}\eta}$ for $\psi(2S) \to \Lambda\overline{\Sigma}$. (b) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}\eta}$ for $\psi(2S) \to \Lambda\overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$.

(a) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}}$ for $\psi(2S) \to \Lambda\overline{\Sigma}$. (b) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}}$ for $\psi(2S) \to \Lambda\overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$.

(a) Invariant mass distribution of $M_{\Sigma^0\overline{\Sigma}^0}$ for $\psi(2S) \to \Lambda\overline{\Sigma}$. (b) Invariant mass distribution of $M_{\Sigma^0\overline{\Sigma}^0}$ for $\psi(2S) \to \Lambda\overline{\Sigma}$ with mass window cut $|M_{\overline{p}\pi^+\gamma} - M_{\overline{\Sigma}}| < 0.0467$.

Sideband Analysis for

$$\psi(2S) \to \Lambda \overline{\Sigma}$$

Calculated Upper Limit at 95% Confidence Level for $\Psi(2S) \to \Lambda \overline{\Sigma}$

Formula for the calculation of upper limit is given bellow

$$B(J/\psi \to B\overline{B}) \le \frac{N_{obs}}{N_{J/\psi} \times \varepsilon \times B_i}$$

 N_{obs} , ε and B_i epresents number of observed signal events, detection efficiency and intermediate branching fraction. The calculated branching fraction is

$$B(\psi(2S) \to \Lambda \overline{\Sigma}) < 0.66 \times 10^{-7}$$

Event Selection for $\psi(2S) \to \Lambda^{\overline{\Xi}}$

There are 4 charge tracks in $\psi(2S) \to \Lambda \overline{\Xi}$ as $\Lambda \to P\pi^-$ and $\overline{\Xi} \to \overline{p}\pi^+\gamma\gamma$

Only those events are selected having

- nGood == 4
- number of $\chi == 2$
- nCharge == o

PID is applied to select events having 1 proton 1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of

using kinematic fit for

 $\Lambda \to p \pi^-$

$$\psi(2S) \to \Lambda \overline{\Xi}$$

MC and Data invariant mass of for

using kinematic fit

 $\overline{\Xi} \to \overline{p}\pi^+\gamma\gamma$

$$\psi(2S) \to \Lambda \overline{\Xi}$$

Background Analysis for $\psi(2S) \to \Lambda \overline{\Xi}$

Some cuts are applied to remove the background on both Monte carlo and data signals.

Cut applied on MC is

• including cut of Λ

Cut applied on real data signals are

•
$$\chi^2 < 40$$

•
$$|M_{\Lambda} - 1.1156| < 0.005$$

•
$$|M_{\Xi} - 1.1156| > 0.005$$

•
$$|M_{\Sigma} - 1.19142| > 0.006$$

•
$$|M_{\Delta} - 1.232| > 0.008$$

• decay length ratio
$$\Lambda > 2$$

MC and Data invariant mass of $\overline{\Xi} \to \overline{p}\pi^+\gamma\gamma$ after applying cuts for $\psi(2S) \to \Lambda \overline{\Xi}$

Observed background channels for $\psi(2S) \to \Lambda \overline{\Xi}$ using 10^5 MC events

background channel	number of events	Normalized events	Branching fraction
$\Xi^{-}\overline{\Xi}^{+}$	2	0	$(2.64 \pm 0.18) \times 10^{-4}$
$P\overline{P}\eta$	2	0	$(6.0 \pm 0.4) \times 10^{-5}$
$\Lambda \overline{\Lambda} \pi^0$	1	0	$< 2.9 \times 10^{-6}$
$P\overline{P}\eta$	2	0	_
$P\overline{P}\omega$	0	0	$(6.9 \pm 2.1) \times 10^{-5}$
$P\overline{P}\pi^+\pi^-$	0	0	$(6.0 \pm 0.4) \times 10^{-4}$
$P\overline{P}\pi^+\pi^-\pi^0$	1	0	$(7.3 \pm 0.7) \times 10^{-4}$
$P\overline{P}\rho$	2	0	$(5.0 \pm 2.2) \times 10^{-5}$
$\Lambda\overline{\Lambda}\eta$	1	0	$(2.5 \pm 0.4) \times 10^{-5}$
$\Lambda\overline{\Lambda}$	0	0	$(3.57 \pm 0.18) \times 10^{-4}$
$\Sigma^0 \overline{\Sigma^0}$	0	0	$(2.32 \pm 0.16) \times 10^{-4}$

(a) Invariant mass distribution of $M_{\Xi^-\overline{\Xi}^+}$ for $J/\psi \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{\Xi^-\overline{\Xi}^+}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $J/\psi \to \Lambda \overline{\Xi}$

(a) Invariant mass distribution of $M_{P\overline{P}\eta}$ for $\psi(2S) \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\eta}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\psi(2S) \to \Lambda \Xi$

(a) Invariant mass distribution of $M_{\Lambda \overline{\Lambda} \pi^0}$ for $\psi(2S) \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{\Lambda \overline{\Lambda} \pi^0}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\psi(2S) \to \Lambda \Xi$

(a) Invariant mass distribution of $M_{P\overline{P}\acute{\eta}}$ for $\psi(2S) \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\acute{\eta}}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\psi(2S) \to \Lambda \overline{\Xi}$

(a) Invariant mass distribution of $M_{P\overline{P}\omega}$ for $\psi(2S) \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\omega}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\psi(2S) \to \Lambda \Xi$

(a) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-}$ for $\psi(2S) \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\psi(2S) \to \Lambda \overline{\Xi}$

(a) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-\pi^0}$ for $\psi(2S) \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\pi^+\pi^-\pi^0}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\psi(2S) \to \Lambda \overline{\Xi}$

(a) Invariant mass distribution of $M_{P\overline{P}\rho}$ for $\psi(2S) \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{P\overline{P}\rho}$ with mass window cut $|M_{\overline{P}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\psi(2S) \to \Lambda \overline{\Xi}$

(a) Invariant mass distribution of $M_{\Lambda \overline{\Lambda} \eta}$ for $\psi(2S) \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{\Lambda \overline{\Lambda} \eta}$ with mass window cut $|M_{\overline{p} \pi^+ \gamma \gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\psi(2S) \to \Lambda \overline{\Xi}$

(a) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}}$ for $\psi(2S) \to \Lambda\overline{\Xi}$. (b) Invariant mass distribution of $M_{\Lambda\overline{\Lambda}}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\psi(2S) \to \Lambda\overline{\Xi}$

(a) Invariant mass distribution of $M_{\Sigma^0\overline{\Sigma}^0}$ for $\psi(2S) \to \Lambda \overline{\Xi}$. (b) Invariant mass distribution of $M_{\Sigma^0\overline{\Sigma}^0}$ with mass window cut $|M_{\overline{p}\pi^+\gamma\gamma} - M_{\overline{\Xi}}| < 0.0467$ for $\psi(2S) \to \Lambda \overline{\Xi}$

Sideband Analysis for $\psi(2S) \to \Lambda \overline{\Xi}$

Calculated Upper Limit at 95% Confidence Level for $\psi(2S) \to \Lambda \overline{\Xi}$

Formula for the calculation of upper limit is given bellow

$$B(J/\psi \to B\overline{B}) \le \frac{N_{obs}}{N_{J/\psi} \times \varepsilon \times B_i}$$

Here N_{obs} , ε and B_i epresents number of observed signal events, detection efficiency and intermediate branching fraction . The calculated branching fraction is

$$B(\psi(2S) \to \Lambda \overline{\Xi}) < 0.12 \times 10^{-6}$$

The systematic errors for $\psi(2S) \to \Lambda \overline{\Delta}, \Lambda \overline{\Sigma}, \Lambda \overline{\Xi}$

Sources	% error for $\Lambda \overline{\Delta}$	% error for $\Lambda \overline{\Sigma}$	% error for $\Lambda \overline{\Xi}$
MDC Tracking (Ablikim et al., 2017)	8	8	8
PID (Ablikim et al., 2017)	4	5	6
$\psi(2S)$ number (Ablikim et al., 2017)	2.9	2.9	2.9
$\Lambda \to P\pi^-$ (Patrignani et al., 2016)	0.5	0.5	0.5
$\overline{\Sigma^0} \to \overline{p}\pi^+ \gamma$ (Patrignani et al., 2016)	_	0	_
$\overline{\Xi} \to \overline{\Lambda} \pi^0$ (Patrignani et al., 2016)	_	_	0.012
Total error	9.41	9.88	10.42

Results

Calculated Branching fraction and upper limits are

$$B(J/\psi\to\Lambda\overline{\Sigma})=(1.8\pm0.19)\times10^{-6} \quad B(\psi(2S)\to\Lambda\overline{\Sigma})<(6.6\pm0.098)\times10^{-8}$$

$$B(J/\psi \to \Lambda \overline{\Delta}) < (8.0 \pm 0.18) \times 10^{-9}$$
 $B(\psi(2S) \to \Lambda \overline{\Delta}) < (2.1 \pm 0.094) \times 10^{-8}$

$$B(J/\psi \to \Lambda \overline{\Xi}) < (7.14 \pm 0.2) \times 10^{-8}$$
 $B(\psi(2S) \to \Lambda \overline{\Xi}) < (1.2 \pm 0.01) \times 10^{-7}$

Thanks