## Study of $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \varphi$ decay

Aonan Zhu<sup>1</sup>, Jianping Dai<sup>3</sup>, Limin Gu<sup>2</sup>, and Hai-Bo Li<sup>1</sup>

IHEP
 NJU
 SJTU

Apr. 17<sup>th</sup> , 2019

# Outline

- Motivation
- Analysis method
- Data set
- Event selection
- Fitting result
- Systematic uncertainty
- Summary and next to do

## **Motivation**

- 1. The branching fraction of  $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \phi$  has not been measured in PDG.
- 2. Search for new intermediated states in  $\Lambda \overline{\Lambda}$  and  $\overline{\Lambda} \phi$ .

#### **Analysis Method**

- 1. Partial reconstruction: only one  $\Lambda$  or one  $\overline{\Lambda}$ .
- 2. Fit the recoil mass of  $\phi \Lambda$  to obtain signal yield.

### Data set

- BOSS version: 6.6.4.p03
- Data:  $(448.1\pm2.9) \times 10^6 \psi(3686)$  events (2009+2012)[1].
- Inclusive MC:  $5.06 \times 10^8$  (2009+2012), study backgrounds.
- Signal MC:  $6.84 \times 10^6$  events, study the efficiency.

| $\psi(3686) \rightarrow \phi \Lambda \bar{\Lambda} $ (PHSP); | $\psi(3686) \rightarrow \phi \Lambda \bar{\Lambda} \text{ (PHSP)};$ | $\psi(3686) \rightarrow \phi \Lambda \overline{\Lambda} \text{ (PHSP)};$ |
|--------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|
| $\phi \rightarrow K^+ K^-$ (VSS);                            | $\phi \rightarrow K^+ K^- (VSS);$                                   | $\phi \rightarrow K^+ K^-$ (VSS);                                        |
| $\Lambda \rightarrow p\pi^{-}(\text{PHSP});$                 | $\Lambda \rightarrow p\pi^+$ (PHSP);                                | $\Lambda \rightarrow \operatorname{non} p \pi^-;$                        |
| $\bar{\Lambda} \to \bar{p}\pi^+$ (PHSP).                     | $\bar{\Lambda} \to \operatorname{non} \bar{p}\pi^+.$                | $\bar{\Lambda} \rightarrow \bar{p}\pi^+$ (PHSP).                         |

[1] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 42, 023001 (2018).

## **Event Selection**

• Good charged tracks:

 $|V_z| < 20 \text{ cm}, |\cos \theta| < 0.93;$ 

 $N_{\text{Good}} \ge 4.$ 

• PID (dE/dx and TOF):

For (anti-) proton:  $prob(p) > prob(K), prob(p) > prob(\pi);$ 

For Kaon:  $prob(K) > prob(p), prob(K) > prob(\pi);$ 

- $N_{K^+} = 1, N_{K^-} = 1.$
- Vertex fit on  $K^+K^-$ , but no requirement on  $\chi^2_{ver}$ .
- $\Lambda(\overline{\Lambda})$  candidate:

Second vertex fit; If there are more than one  $\Lambda(\overline{\Lambda})$  candidates, select the best candidate with the smallest  $\chi^2_{sec}$ .

### **Further Selection**

 $\Lambda(\bar{\Lambda})$  candidate:

 $\phi$  candidate:



## **Background study**

- Peaking background
- Non-peaking background

#### **Peaking background**

#### veto $\boldsymbol{\Omega}$ background

The observed events from inclusive MC sample after above event selection criteria:

| No. | Decay mode                                                                                   | final states                           | nEvt |
|-----|----------------------------------------------------------------------------------------------|----------------------------------------|------|
| 0   | $\psi' \to \phi \Lambda \bar{\Lambda}, \Lambda \to p \pi^-, \bar{\Lambda} \to \bar{p} \pi^+$ | $p \pi^- K^+ K^- \bar{p} \pi^+$        | 9537 |
| 1   | $\psi' \to \phi \Lambda \bar{\Lambda}, \Lambda \to p \pi^-, \bar{\Lambda} \to \bar{n} \pi^0$ | $p \pi^- K^+ K^- \bar{n} \pi^0$        | 3589 |
| 2   | $\psi' \to \phi \Lambda \bar{\Lambda}, \Lambda \to n\pi^0, \bar{\Lambda} \to \bar{p}\pi^+$   | $n \pi^0 K^+ K^- \bar{p} \pi^+$        | 3515 |
| 3   | $\psi' \to \Omega^- \bar{\Omega}^+, \Omega^- \to \Lambda K^-$                                | $p \pi^- K^+ K^- \bar{p} \pi^+$        | 12   |
| 4   | $\psi'  ightarrow \gamma \chi_{c1}, \chi_{c1}  ightarrow \Lambda \bar{\Lambda} \phi$         | $p \pi^- K^+ K^- \bar{p} \pi^+ \gamma$ | 1    |

Events / 5 MeV/c<sup>2</sup>

Suppress  $\Omega$  background:

$$|M(K^+\overline{\Lambda}) - m(\overline{\Omega}^+)| > 0.01 \text{ GeV/c}^2$$
$$|M(K^-\Lambda) - m(\Omega^-)| > 0.01 \text{ GeV/c}^2$$



#### **Peaking background**

The events in the  $\phi$  sideband region:

 $M_{K^+K^-}$ : [1.045, 1.075] GeV/ $c^2$ 30 🔶 🔶 sideband Events / 4 MeV/c<sup>2</sup> signal 200 20 data Fit Events/ 2.4 MeV/c<sup>2</sup> 10 0 1.05 1.2 1.1 1.15 Mrec/Ca/1/a<sup>2</sup> sideband + data 200 50 Events / 4 MeV/c<sup>2</sup> ø sideband 100 1.05 1.1  $M_{K^+K^-}(\text{GeV}/c^2)$ 

The normalization factor  $f_{\phi} = 0.988$ .

#### **Non-** $\phi$ background

0

1.05

1.1

 $M_{\phi\Lambda}^{rec}(GeV/c^2)$ 

1.15



#### Non-peaking background

The events in the  $\Lambda$  sideband region:

 $M_{p\pi^{-}(\bar{p}\pi^{+})}$ : [1.091, 1.101] U[1.131, 1.141] GeV/ $c^{2}$ 



No obvious peaking background.

Non- $\Lambda$  background

#### Non-peaking background

The background from the continum process  $e^+e^- \rightarrow \Lambda \overline{\Lambda} \phi$  is studied using the off-resonance samples of 44.49 pb–1 taken at  $\sqrt{s}$ = 3.650 GeV, No significant signal can be observed here, so we can ignore the continuous contribution .



## **Cut flow from signal MC**

| Cut flow                                              | Number of events (efficiency %) |
|-------------------------------------------------------|---------------------------------|
| Number of generated events                            | 6839520 (100.00)                |
| $N_{\text{good}} \ge 4 \&  \cos\theta  < 0.93$        | 4533917 (66.29)                 |
| $N_{K^+} = 1, N_{K^-} = 1$                            | 1915065 (27.99)                 |
| $\Lambda/\overline{\Lambda}$ Reconstruction           | 1645201 (24.05)                 |
| $ M_{K^+K^-} - m_{\phi}  < 15 \text{ MeV}/c^2$        | 1515955 (22.16)                 |
| $ M_{p\pi} - m_A  < 5 \text{ MeV}/c^2$                | 1229695 (17.97)                 |
| $\chi_{A}^{2} < 100$                                  | 1216394 (17.78)                 |
| $ M_{K^-\Lambda} - m_{\Omega}  > 10 \text{ MeV}/c^2$  | 1175046 (17.18)                 |
| $1.02 < M_{\phi\Lambda}^{rec} < 1.22 \text{ GeV}/c^2$ | 1171682 (17.12)                 |

## **Fitting result**

Dots with error bar is from Data

**Fitting function:** Signal MC simulation  $\otimes$  a free Gaussian + 2<sup>nd</sup> Chebychev

(a). In  $\phi$  and  $\Lambda$  signal regions

(b). In  $\phi$  sideband region



Net signal yield:  $N_{\text{sig}}^{\text{net}} = N_{\text{sig}}^{(a)} - f_{\phi} * N_{\text{sig}}^{(b)}$ 

#### **Projections on invariant mass**



## **Dalitz plot**



#### Efficiency

Since the shapes from the signal MC (PHSP) is different from Data, we choose  $M_{\Lambda\bar{\Lambda}}$  to reweight the signal MC to get the right efficiency. Divide  $M_{\Lambda\bar{\Lambda}}$  into 14 bins from 2.19 to 2.70 GeV/c<sup>2</sup> :

<sup>30</sup>  $M_{\Lambda\bar{\Lambda}}$  : [2.19, 2.28] GeV/ $c^2$ - $M_{\Lambda\bar{\Lambda}}$  : [2.28, 2.30] GeV/ $c^2$  $M_{\Lambda\bar{\Lambda}}: [2.30, 2.32] \text{ GeV}/c^2$ 15  $48 \pm$ sig=  $45 \pm$ sig= sig=  $53 \pm$ Events/ 2.4 MeV/c<sup>2</sup> Events/ 2.4 MeV/c<sup>2</sup> Events/ 2.4 MeV/c<sup>2</sup> 히 10  $\stackrel{1.1}{\mathsf{M}_{(\Lambda\phi)^{\primest}}}(\text{GeV/c}^2)^{1.15}$ 1.05  $M^{1.1}_{(A\phi)^{rec}} (GeV/c^2)^{.15}$ 1.2 1.05  $M_{(\Lambda\phi)^{\prime\infty}}^{1.1}$  (GeV/c<sup>2</sup>)<sup>1.15</sup> 1.05 1.2 15  $M_{\Lambda\bar{\Lambda}}$  : [2.32 2.34] GeV/ $c^2$  $M_{\Lambda\bar{\Lambda}}$ : [2.34, 2.36] GeV/ $c^2$  $M_{\Lambda\bar{\Lambda}}$  : [2.36, 2.38] GeV/ $c^2$ sig= 39 ± sig=  $46 \pm$  $46 \pm$ sig= / 2.4 MeV/c<sup>2</sup> Events/ 2.4 MeV/c<sup>z</sup> Events/ 2.4 MeV/c<sup>2</sup> Events/ 1.05  $\stackrel{1.1}{M}_{(\Lambda\phi)^{\prime\infty}}^{1.0} \left(\text{GeV/c}^2\right)^{1.15}$ 1.2 1.05  $\stackrel{1.1}{\mathsf{M}_{(\Lambda\phi)'^{\infty}}} \left( {\rm GeV/c}^2 
ight)^{1.15}$ 1.2

Fit results in the  $\phi$  and  $\Lambda$  signal regions for each bin



1.2

### Efficiency



0.23

### **Branching fraction**

 $B(\psi(3686) \to \phi \Lambda \overline{\Lambda}) = \frac{N_{\text{sig}}^{\text{net}}}{N_{\psi(3686)} \cdot \varepsilon^{sig} \cdot B(\phi \to K^+K^-) \cdot B_0}$  $= (1.16 \pm 0.06_{\text{stat}}) \times 10^{-5}$ 

where  $B_0 = 1 - [1 - B(\Lambda \rightarrow p \pi^-)]^2$  based on the following three processes:

$$\begin{split} \psi(3686) &\to \phi \Lambda \bar{\Lambda} \text{ (PHSP)}; \quad \psi(3686) \to \phi \Lambda \bar{\Lambda} \text{ (PHSP)}; \quad \psi(3686) \to \phi \Lambda \Lambda \text{ (PHSP)}; \\ \phi \to K^+ K^- (\text{VSS}); \quad \phi \to K^+ K^- (\text{VSS}); \quad \phi \to K^+ K^- (\text{VSS}); \\ \Lambda \to p \pi^- (\text{PHSP}); \quad \Lambda \to p \pi^+ (\text{PHSP}); \quad \Lambda \to \text{non } p \pi^-; \\ \bar{\Lambda} \to \bar{p} \pi^+ (\text{PHSP}). \quad \bar{\Lambda} \to \text{non } \bar{p} \pi^+. \quad \bar{\Lambda} \to \bar{p} \pi^+ (\text{PHSP}). \end{split}$$

## **IO Check**



|                                                                     | Input                  | Output                            |  |
|---------------------------------------------------------------------|------------------------|-----------------------------------|--|
| $B(\boldsymbol{\psi}(3686) \to \Lambda \overline{\Lambda} \varphi)$ | 7.80* 10 <sup>-4</sup> | $7.63(\pm 0.32_{stat}) * 10^{-4}$ |  |

#### **Systematic uncertainty from MC model**

change the number of reweight bins to 20,



$$B(\psi' \to \phi \Lambda \overline{\Lambda}) = (1.18 \pm 0.06) \times 10^{-5}$$

Finally, we assign 1.7% as this uncertainty.

#### Systematic uncertainty of $\Lambda$ reconstruction

Reconstruction efficiency of  $\Lambda$  is different for Data and Signal MC, we reweight the signal MC to get the right reconstruction efficiency :

- A vertex fit efficiency is calculated in  $4 \times 5 (\cos\theta, p_{\Lambda/\overline{\Lambda}})$  bins;
- Correction factor:  $f^i = \frac{\varepsilon_{data}}{\varepsilon_{sig}}$ , where the efficiencies are obtained from the control sample J/ $\psi \rightarrow pK^+\Lambda[1]$ .

After doing the correction, the final efficiency changes from 20.9% to 21.3%. The difference (1.9%) between corrected MC sample and with uncorrected MC sample is taken as the systematic uncertainty of  $\Lambda$  reconstruction.

### Systematic uncertainty of vetoing $\Omega^-\overline{\Omega}^+$

changing  $|M(K^+\overline{\Lambda}) - m(\overline{\Omega}^+)| > 0.010 \text{ GeV}/c^2$  to  $|M(K^+\overline{\Lambda}) - m(\overline{\Omega}^+)| > 0.015 \text{ GeV}/c^2$ 



The difference (0.6%) on the net signal yield is taken as this systematic uncertainty.

### **Systematic uncertainty from Fitting**



From Signal shape

From background shape



Fitting function: Double Gaussian⊗free Gaussian +2<sup>nd</sup> Chebychev

**Fitting function:** Signal MC simulation⊗free Gaussian +3<sup>nd</sup> Chebychev

| Source           | uncertainty(%) |
|------------------|----------------|
| Signal Shape     | 1.0            |
| Background Shape | 3.2            |

#### **Systematic uncertainty from Fitting**

From fitting range

Vary the range of  $M_{\phi\Lambda}^{\text{rec}}$  from [1.02, 1.22] GeV/ $c^2$  to [1.02 ± 0.01, 1.22 ± 0.01] GeV/ $c^2$ .



Do the fit again, and take the largest difference (1.9%) of branching fraction as systematic error.

#### **From others**

- For tracking efficiency of  $K^{\pm}$ , a clean control sample of  $J/\psi \rightarrow K_S^0 K^{\pm} \pi^{\mp}[1]$  is used, and 1.0% is taken as the systematic uncertainty from tracking efficiency per kaon.
- For the PID of  $K^{\pm}$ , control sample  $J/\psi \to K^+K^-\pi^0$  is used. It is found that the difference on the PID efficiency between data and MC is less than 1% for each kaon[1].
- The systematic uncertainty due to the total  $\psi'$  number is determined to be 0.6% according to[2]
- Uncertainty in Branch of  $\Lambda$  and  $\phi$  is quoted from PDG[3],which is 0.5% both.

[1] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 83, 112005 (2011)
[2] https://arxiv.org/pdf/1709.03653.pdf
[3] http://pdglive.lbl.gov/Particle.action?init=0&node=S018&home=BXXX020

## **Systematic uncertainty**

| Source                                            |                                  | Relative systematic uncertainty(%) |  |
|---------------------------------------------------|----------------------------------|------------------------------------|--|
| Tracking for                                      | or K <sup>+</sup> K <sup>-</sup> | 2.0                                |  |
| PID for K <sup>+</sup>                            | K <sup>-</sup>                   | 2.0                                |  |
| Λ reconstru                                       | iction                           | 1.9                                |  |
| Veto $\Omega^-\overline{\Omega}^+$                |                                  | 0.6                                |  |
| $B(\phi \to K^+K^-) \cdot B(\Lambda \to p \pi^-)$ |                                  | 0.7                                |  |
| $N_{\psi(3686)}$                                  |                                  | 0.6                                |  |
| MC modeling                                       |                                  | 1.7                                |  |
| Fitting                                           | signal shape                     | 1.0                                |  |
|                                                   | background shape                 | 3.4                                |  |
|                                                   | fitting range                    | 1.9                                |  |
| Total                                             | •                                | 5.7                                |  |

## **Summary**

Based on 4.48 ×10<sup>8</sup>  $\psi$ (3686) data collected with the BESIII detector at BEPCII, we measure the absolute branching fraction of  $\psi$ (3686)  $\rightarrow \phi \Lambda \overline{\Lambda}$  for the first time ,which is  $(1.16 \pm 0.06_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-5}$ .

# Thank You !

# Back Up

#### $\Lambda$ construction

| $\epsilon_{data}(\%)$ |                 |                  | P(GeV/c)         |                  |                  |
|-----------------------|-----------------|------------------|------------------|------------------|------------------|
| $\cos\theta$          | (0, 0.3)        | (0.3, 0.5)       | (0.5, 0.7)       | (0.7, 0.9)       | (0.9, 1.1)       |
| (0.00, 0.20)          | $8.28 \pm 0.38$ | $29.03 \pm 0.37$ | $35.43 \pm 0.32$ | $39.68 \pm 0.47$ | $40.82\pm0.14$   |
| (0.20, 0.40)          | $8.22 \pm 0.37$ | $28.28 \pm 0.37$ | $35.00\pm0.33$   | $39.27 \pm 0.50$ | $40.21\pm0.14$   |
| (0.40, 0.65)          | $8.01 \pm 0.31$ | $26.56 \pm 0.33$ | $33.25\pm0.32$   | $36.56 \pm 0.50$ | $37.76 \pm 0.12$ |
| (0.65, 1.00)          | $4.45\pm0.21$   | $14.98\pm0.21$   | $20.15\pm0.25$   | $23.80 \pm 0.51$ | $29.97 \pm 0.11$ |

|              |                 |                  | $\epsilon_{MC}(\%)$ |                  |                  |
|--------------|-----------------|------------------|---------------------|------------------|------------------|
| $\cos\theta$ |                 |                  | P(GeV/c)            |                  |                  |
|              | (0.0, 0.3)      | (0.3, 0.5)       | (0.5, 0.7)          | (0.7, 0.9)       | (0.9, 1.1)       |
| (0.00, 0.20) | $8.31 \pm 0.25$ | $28.38 \pm 0.29$ | $34.94 \pm 0.27$    | $39.11 \pm 0.34$ | $39.98 \pm 0.14$ |
| (0.20, 0.40) | $7.73 \pm 0.25$ | $27.78 \pm 0.28$ | $34.22\pm0.26$      | $38.11 \pm 0.33$ | $39.33 \pm 0.14$ |
| (0.40, 0.65) | $6.77\pm0.21$   | $25.52\pm0.24$   | $32.20\pm0.23$      | $35.52\pm0.31$   | $37.00 \pm 0.12$ |
| (0.65, 1.00) | $3.93 \pm 0.14$ | $14.66\pm0.15$   | $18.98 \pm 0.15$    | $22.06 \pm 0.32$ | $28.43 \pm 0.11$ |
|              |                 |                  | 1 H H               |                  |                  |

#### [1] arXiv:1803.05706

#### **Non-** $\phi$ background



 $M^{rec}_{\phi\Lambda}(GeV/c^2)$ 





#### Daliz plot



#### After reweighted:









Primary



#### Multi research



 $\varepsilon$   $\downarrow$  0. 19%



# Efficiency for signal MC

