Measurement of the e⁺e⁻ $\rightarrow \pi^+\pi^-h_c$ cross section

Tong Liu Yuping Guo

Outline

- Motivation & data set
- Event selection
- Fitting
- Looking for Zc status
- Next to do

Motivation

- The cross section of $\pi^+\pi^-h_c$ at 79 energy within 3.9-4.6 GeV have been measured
- Two structures are observed around 4.220 and 4.380 GeV/c²

Motivation

- In the mass spectrum of $\pi^{\pm}h_c$, a charged charmonium-like resonance $Z_c(4020)$ is observed (6.4 σ).
- A structure at 3.9 GeV is seen (2.1σ) .

Motivation

- Using new XYZ sample taken at 2017 and this year
 - Previous vacancy is filled
 - Statistic is higher

 η_c decay mode

- Target channel : $e^+e^- \rightarrow \pi^+\pi^-h_c \rightarrow \pi^+\pi^-\gamma\eta_c$
 - η_c is reconstructed using 16 channels
 - Ks $\rightarrow \pi^+\pi^-$
 - $\pi^0/\eta \rightarrow \gamma\gamma$
- 16 channels are divided to three classes:
 - $\eta_c \rightarrow$ charged particles
 - $\eta_c \rightarrow$ charged particles + π^0/η
 - $\eta_c \rightarrow$ charged particles + Ks

- Good charged tracks
 - V_{xy} < 1 cm, |V_z| < 10 cm
 - |cos θ | < 0.93
- Good photon
 - $E_{\gamma} > 25$ MeV (barrel) OR $E_{\gamma} > 50$ MeV (end caps)
 - 0 < TDC < 14
- Exact number of good charged tracks
- Minimum limit for number of good photons
- Build a $\gamma \pi^+ \pi^-$ list
 - $3.45 \text{ GeV/c}^2 < m_{rec}^{\pi\pi} < 3.65 \text{ GeV/c}^2$
 - 2.8 GeV/c² < $m_{rec}^{\gamma\pi\pi}$ < 3.2 GeV/c²

- For Ks channels
 - Combine two tracks and get a virtual track from vertex fit
 - The virtual track is fitted to IP
 - decay length : $L/\sigma_L > 2$
 - $| M_{\pi\pi} M_{Ks} | < 20 \text{ MeV/c}^2$
- Store a combination with minimum χ^2
 - $\chi^2 = \chi^2_{4c} + \Sigma \chi^2_{PID}$

- For channels with π^0/η :
- π^0 and η mass window : $|M_{\gamma\gamma} M_{\pi/\eta}| < 15 \text{ MeV/c}^2$
- Store a combination with minimum χ^2
 - $\chi^2 = \chi^2_{4c} + \Sigma \chi^2_{PID} + \chi^2_{1c}$
- For channels with only charged tracks:
- Store a combination with minimum χ^2

•
$$\chi^2 = \chi^2_{4c} + \Sigma \chi^2_{PID}$$

- Further selections after re-combination : χ^2 and mass window for η_c
 - π^0/η channels : $\chi_{4c}^2 < 20$, $|M_{\gamma\pi\pi}^{rec} M_{\eta c}| < 45 \text{ MeV/c}^2$
 - Other channels : $\chi_{4c}^2 < 35$, $|M_{\gamma\pi\pi}^{rec} M_{\eta c}| < 50 \text{ MeV/c}^2$
- The background is studied using inclusive MC at 4.237 GeV
 - No peaking background
 - The agreement is good

Optimization

- The optimization is done using data sample
 - The definition of signal/sideband region for different channels is shown below

Optimization

- The optimization of χ^2 requirement is done using total data sample
 - FOM = S/sqrt(S+B)

FOM distribution

 χ^2 distribution of Signal-sideband sideband

Optimization

- The optimization of mass window is done using total data sample
 - Use default χ^2 cut (35 for C/Ks channels and 20 for N channels)

- Fit $M_{\pi\pi}^{rec}$ of MC simulation to extract resolution
 - BW convolved with a double-Gaussian
 - Simultaneous fit

- Fit $M_{\pi\pi}^{rec}$ of data to extract signal
 - BW convolved with a double-Gaussian + linear function
 - The difference of between data and MC can be estimated by using MC convolve with a Gaussian
 - Here simply use MC shape

- Use previous line-shape as input
- Not far from previous result

Ecms / GeV	N _{signal}	ΣBr _i *ε _i (%)	(1+δ)	Lumi	σ(pb)
4180	570.3±37.7	3.092	0.711	3189.0	15.1 ± 1.0
4190	159.8 ± 17.6	3.112	0.713	521.9	25.4±2.8
4200	148.9 ± 16.8	3.192	0.711	523.7	23.2±2.6
4210	198.8 ± 18.9	3.097	0.713	511.2	32.3±3.1
4220	286.9 ± 21.0	3.094	0.723	508.2	46.4±3.4
4237	329.6±23.3	3.194	0.763	528.9	47.5±3.4
4246	339.6±24.1	3.108	0.785	532.7	48.2±3.4
4270	306.7±22.0	3.025	0.832	529.3	42.9±3.1
4280	73.6±12.2	2.972	0.843	174.5	31.2±5.2

• New results (before iteration) are close to previous fit curve

• Sum 16 channels up at 8 energy points

• $M_{\pi hc}$, sum 16 channels up at 8 energy points

- $M_{\pi\pi}$, sum 16 channels up at 8 energy points
- This distribution seems correlated to Ecms

- Background level is high
- Structures can be seen if adding channels and data points up

Next to do

- Further selection optimization
- Study data-MC difference on the resolution of $M_{\pi\pi}^{rec}$

Thank you !

If include R-scan points

• Sum 8 energy points up

BESIII charmonium meeting, June 2019

• Sum 8 energy points up

- The optimization of χ^2 requirement is done using data sample at 4.237 GeV
 - The definition of signal/sideband region for different channels is shown below

- The optimization of χ^2 requirement is done using data sample at 4.237 GeV ullet
 - FOM = S/sqrt(S+B)

FOM distribution

sideband

- The optimization of mass window is done using data sample at 4.237 GeV
 - Use default χ^2 cut (35 for C/Ks channels and 20 for N channels)

