Updates on measurement of $e^+e^- \rightarrow \eta h_c$ cross section

A. Guo, C. Yuan, R. Mitchell Indiana University, IHEP

18 June 2019 Charmonium group meeting

Motivation

- The previous observations show a hint of new resonance around 4.2 GeV but we can't draw a clear conclusion because of the limited statistics.
- Similar structure also was observed in e⁺e⁻ →ππh_c, The strong coupling to h_c indicate this structure likely to be a hybrid.
- Shed light on the nature of Y(4260)
 - Is it one state? Recent study of exclusive process $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, $\pi^+\pi^- h_c$ shows a fine structure near 4.2 GeV
 - Is it hybrid state?

PRD96, 012001 (2017)

Data sets and event topology

Event topology: $e^+e^- \rightarrow \eta h_c; h_c \rightarrow \gamma \eta_c; \eta_c \rightarrow Xi;$

Data sets:

2016:

- 4180 : 3160 pb⁻¹
 2017:
- 4190 : 521.9 pb⁻¹
- 4200: 523.7 pb⁻¹
- 4210: 511.2 pb⁻¹
- 4220: 508.2 pb⁻¹
- 4237: 528.9 pb⁻¹
- 4246: 532.7 pb⁻¹
- 4270: 529.3 pb⁻¹
- 4280: 174.5 pb⁻¹

Decay mode	BR
$\eta_c \rightarrow p\overline{p}$	~0.13%
$\eta_c \rightarrow \pi^+ \pi^- p \overline{p}$	~0.45%
$\eta_c \rightarrow 2(\pi^+\pi^-)$	~1.20%
$\eta_c \rightarrow 2(K^+K^-)$	~0.15%
$\eta_c \rightarrow \pi^+ \pi^- K^+ K^-$	~1.50%
$\eta_c \rightarrow 3(\pi^+\pi^-)$	~2.00%
$\eta_c \rightarrow K^+ K^- 2(\pi^+ \pi^-)$	~1.00%
$\eta_c \rightarrow K^+ K^- \pi^0$	~1.20%
$\eta_{c} \rightarrow \boldsymbol{p} \overline{\boldsymbol{p}} \pi^{0}$	~0.18%
$\eta_c \rightarrow K_S K \pi$	~1.80%
$\eta_c \rightarrow K_S K3\pi$	~2.40%
$\eta_c \rightarrow \pi^+ \pi^- \eta$	~1.60%
$\eta_c \rightarrow K^+ K^- \eta$	~0.57%
$\eta_c \rightarrow 2(\pi^+\pi^-) \eta$	~2.70%
$\eta_c \rightarrow \pi^+ \pi^- \pi^0 \pi^0$	~2.40%
$\eta_c \rightarrow 2(\pi^+\pi^-) \pi^0\pi^0$	~11.0%

Brief review of data analysis

- Standard criteria are used to reconstruct charged tracks, photon, $\pi^0 \eta$ and K_S^0 candidates
- 4c and 5c kinematic fit are performed
- Get the best candidates

Minimize: $\chi^2_{sum} = \chi^2_{4C} + \chi^2_{1C} + \chi^2_{vertex} + \chi^2_{PID}$

- Chisq requirement, mass(energy) windows are quoted from previous analysis
- 16 channels are fitted simultaneously with unbinned maximum likelihood method
 - Signal shape: MC simulation.
 - Background shape: Polynomial function.
 - Relative signal yield of each channel: $Br(\eta_c \rightarrow Xi) \times \epsilon(i)$

Result at 2018 Phys.&Soft. meeting

Fit to energy dependent cross section

Line shape: two coherent BW functions. parameters of the two BW are free

Recent progress

Data sets taken at 4180,4190,4200,4210 MeV are used

Study of background

Study of background

2019/6/17

recoil M(η) / GeV/c²

Study of background

Fit to recoil mass of $\eta @ 4180 \text{ MeV}$

Data

Inclusive MC

Unbinned maximum likelihood fit is performed to data and inclusive MC simultaneously **Signal:** MC simulation.

Background: Argus function. Inclusive MC and data share the same parameters **Signal yield:** Constrained by $Br^*\epsilon$

Fit results at all data-sets

C.M. energy dependent cross section

$$\sigma^{\text{Born}}(e^+e^- \to \eta h_c) = \frac{N_{\text{obs}}}{\mathcal{L}(1+\delta)|1+\Pi|^2 \mathcal{B}(\eta \to \gamma \gamma) \mathcal{B}(h_c \to \gamma \eta_c) \Sigma_i \epsilon_i \mathcal{B}_i}$$

$E_{c.m.}$ (MeV)	Luminosity	N _{sig}	$(1 + \delta)$	$ 1 + \Pi ^2$	$\sigma^{Born}(pb)$	significance
4180.0	3189.0	99 ± 15	0.73	1.056	8.4 ± 1.3	8.3 σ
4190.0	521.9	26 ± 7	0.74	1.056	14.4 ± 4.1	4.9σ
4200.0	523.7	19 ± 7	0.76	1.056	9.5 ± 3.4	3.2 σ
4210.0	511.2	19 ± 7	0.80	1.057	9.3 ± 3.4	3.7 σ
4220.0	508.2	10 ± 6	0.85	1.057	4.8 ± 2.7	2.0σ
4237.0	528.9	20 ± 8	0.92	1.056	8.8 ± 3.4	2.9σ
4246.0	532.7	6 ± 4	0.95	1.056	2.7 ± 1.7	1.6σ
4270.0	529.3	11 ± 6	0.97	1.054	5.2 ± 2.6	1.7 σ
4280.0	174.5	0 ± 3	0.95	1.054	0.0 ± 3.6	0.0σ

Fit to C.M. energy dependent cross section

c.m. energy dependent cross section can be parameterized as 2 coherent BW functions:

$$\sigma^{Born}(s) = |BW_1(s)e^{i\phi} + BW_2(s)|^2$$

The amplitude of BW is:

BW(s) =	$\sqrt{12\pi\Gamma_{ee}\Gamma_{tot}Br(Y\to\eta h_c)}$	$PS(\sqrt{s})$
	$s - M^2 + iM\Gamma_{tot}$	PS(M)

Parameters	Solution1	Solution2
M_1 (MeV)	4191.1 ± 7.6	4191.0 ± 5.2
$\Gamma_{tot}^{Y_1}$ (MeV)	53.9 ± 23.2	53.9 ± 22.1
$\Gamma_{ee}^{Y_1} Br$ (eV)	0.6 ± 0.3	1.0 ± 0.1
ϕ_1 (rad)	-2.0 ± 1.6	2.3 ± 0.2
M_2 (MeV)	4379.1 ± 27.3	4379.2 ± 22.7
$\Gamma_{tot}^{Y_2}$ (MeV)	85.0 ± 89.3	84.8 ± 86.1
$\Gamma_{ee}^{Y_2} Br$ (eV)	0.9 ± 0.4	1.7 ± 0.8

Sys. for cross section measurement

Data-set Source	4180	4190	4200	4210	4220	4237	4246	4270	4280
Luminosity	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
$\Sigma_i \epsilon_i \times \mathcal{B}(\eta_c \to X_i)$	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
Signal shape	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Background shape	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
Fitting range	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
$\mathcal{B}(h_c \to \gamma \eta_c)$	15.7	15.7	15.7	15.7	15.7	15.7	15.7	15.7	15.7
ISR correction	1.7	2.5	3.0	2.0	2.4	6.4	6.5	5.8	3.6
VP correction	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Total	22.6	22.7	22.8	22.7	22.7	23.5	23.5	23.3	22.9

Systematic uncertainty – Fit method

- Mass resolution smear signal according to control sample
- Background shape polynomial instead of Argus
- Fit range vary range randomly
- Take the average discrepancy from 4180~4270 MeV as uncertainty

Systematic uncertainty – ISR

- Vary the resonant parameters within its error
- Largest difference to nominal line-shape on ISR factor is taken as uncertainty

TABLE VI. ISR c	orrection factor	and its error
-----------------	------------------	---------------

Energy(MeV)	Max Error (in %)
4180	1.7
4190	2.5
4200	3.0
4210	2.1
4220	2.3
4237	5.0
4237	6.7
4246	7.0
4270	6.4
4280	4.0

Systematic uncertainty due to $\sum \epsilon_i * B_i$

• The M($\gamma\gamma$) mass resolution discrepancy between data and MC is studied by control sample $e^+e^- \rightarrow$ $\eta J/\psi$

Sources	р <u></u>	$2(\pi^+\pi^-)$	$2(K^+K^-)$	$K^+K^-\pi^+\pi^-$	$p\bar{p}\pi^{+}\pi^{-}$	$3(\pi^+\pi^-)$	$K^{+}K^{-}2(\pi^{+}\pi^{-})$) $K^{+}K^{-}\pi^{0}$
Tracking eff.	2.0	4.0	4.0	4.0	4.0	6.0	6.0	2.0
Photon eff.	3.0	3.0	3.0	3.0	3.0	3.0	3.0	5.0
PID	2.0	4.0	4.0	4.0	4.0	6.0	6.0	2.0
K_S^0 eff.	_	_	_	_	_	_	_	-
π^0 eff.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2
η eff.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
η_c decay model	0.0	2.5	5.3	3.4	2.3	0.0	0.2	0.0
η_c line shape	6.3	6.5	5.2	5.2	6.3	5.2	6.3	5.2
KmFit eff.	2.0	2.6	2.6	2.2	2.3	4.1	2.6	0.1
Cross feed	0.0	0.4	0.0	2.4	0.0	0.0	0.0	0.0
MC sample	2.0	2.1	2.2	2.1	2.2	2.2	2.2	2.2
$\mathcal{B}(\eta_c \to X_i)$	37.0	22.0	46.0	26.0	34.0	28.0	54.0	23.0

Systematic uncertainty due to $\sum \epsilon_i * B_i$

• The M($\gamma\gamma$) mass resolution discrepancy between data and MC is studied by control sample $e^+e^- \rightarrow$ $\eta J/\psi$

- To simulated η_c decay:
 - 3 body: Body3
 - 4 body: mH2
 - 5/6: mix intermediate states according to PDG

Sources	$p\bar{p}$	$2(\pi^+\pi^-)$	$2(K^+K^-)$	$K^+K^-\pi^+\pi^-$	$p\bar{p}\pi^{+}\pi^{-}$	$3(\pi^+\pi^-)$	$K^{+}K^{-}2(\pi^{+}\pi^{-})$) $K^+K^-\pi^0$
Tracking eff.	2.0	4.0	4.0	4.0	4.0	6.0	6.0	2.0
Photon eff.	3.0	3.0	3.0	3.0	3.0	3.0	3.0	5.0
PID	2.0	4.0	4.0	4.0	4.0	6.0	6.0	2.0
K_S^0 eff.	_	_	_	_	_	_	_	_
π^0 eff.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2
η eff.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
η_c decay model	0.0	2.5	5.3	3.4	2.3	0.0	0.2	0.0
η_c line shape	6.3	6.5	5.2	5.2	6.3	5.2	6.3	5.2
KmFit eff.	2.0	2.6	2.6	2.2	2.3	4.1	2.6	0.1
Cross feed	0.0	0.4	0.0	2.4	0.0	0.0	0.0	0.0
MC sample	2.0	2.1	2.2	2.1	2.2	2.2	2.2	2.2
$\mathcal{B}(\eta_c \to X_i)$	37.0	22.0	46.0	26.0	34.0	28.0	54.0	23.0
F								

Sys. for resonances measurement

- CME calibration
 - Affect mass by 1 MeV
- Beam spread
 - Smear the CME by 1.6 MeV
- Uncertainty of cross section measurement
 - Fit: using the cross section measured with different fit model
 - Correlated part: ~22% for $\Gamma_{ee}Br$

Solution1					Solution2					
Parameters	CME	Beam	Fit	σ^{Born}	Sum	CME	Beam	Fit	σ^{Born}	Sum
M_1 (MeV)	1.0	-0.7	0.7	_	1.4	1.0	-0.7	0.8	_	1.4
$\Gamma_{tot}^{Y_1}$ (MeV)	_	-2.6	1.4	_	3.0	_	-2.6	1.4	_	2.9
$\Gamma_{ee}^{Y_1} Br (eV)$	_	-0.0	0.0	0.1	0.1	_	-0.1	0.0	0.2	0.3
ϕ_1 (rad)	_	-0.32	0.06	_	0.33	_	0.17	0.05	_	0.18
M_2 (MeV)	1.0	0.7	2.3	_	2.6	1.0	0.6	2.2	_	2.5
$\Gamma_{tot}^{Y_2}$ (MeV)	_	-4.1	13.3	_	13.9	_	-3.8	13.2	_	13.7
$\Gamma_{ee}^{Y_2} Br$ (eV)	_	0.1	0.0	0.1	0.1	_	-0.1	0.1	0.2	0.3

Summary

- Cross sections of $e^+e^- \rightarrow \eta h_c$ from 4.18~4.28 GeV are measured
- Line shape can be described as 2 coherent BW
- Memo is ready
- New data taken this year will be analyzed soon.

Resonance	Mass (MeV)	Width (MeV)
This work	$4191.1 \pm 7.6 \pm 1.4$	$53.9 \pm 23.2 \pm 3.0$
Y(4220) in $e^+e^- \rightarrow \pi\pi h_c$	$4218.4^{+5.5}_{-4.5}\pm0.9$	$66^{+12.3}_{-8.3}\pm0.4$
$\psi(4160)$	4191 ± 5	70 ± 10

Systematic error VP

