## Measurement of the branching fraction of $\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}$

Limin $\mathrm{Gu}^{1}$, Xinxin $\mathrm{Ma}^{2}$, Shihai Zhu ${ }^{3}$, Shuangshi Fang ${ }^{2}$, Haibo $\mathrm{Li}^{2}$, Shenjian Chen ${ }^{1}$

${ }^{1}$ NanJing University<br>${ }^{2}$ Institute of High Energy Physics<br>${ }^{3}$ University of Science and Technology LiaoNing

June18, 2019

## Outline

(1) Motivation
(2) Data Sample
(3) Analysis Method
(4) Event Selection
(5) Systematic Uncertainties
(6) Summary

## Motivation I

- The electromagnetic(EM) Dalitz decay, $\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}$, provides an ideal opportunity to probe the structure of $\psi^{\prime}$ and to investigate the interactions between $\psi^{\prime}$ and virtual photon.
L. G. Landsberg, Sov. Phys. Usp. 28, 435 (1985)
L. G. Landsberg, Phys. Rept. 128, 301 (1985)
- The M1 transition, $\psi^{\prime} \rightarrow \gamma \eta_{c}$, is a significant process to understand the spin interactions between charmonium states. In experiment, the ratio

$$
\begin{equation*}
R=\frac{\Gamma\left(\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}\right)}{\Gamma\left(\psi^{\prime} \rightarrow \gamma \eta_{c}\right)} \tag{1}
\end{equation*}
$$

can be used to test theoretical models, where many uncertainties can be cancelled.

## Motivation II

- In experiment, the EM Dalitz decays of light unflavored vector mesons ( $\rho^{0}, \omega, \phi$ ) have been widely observed.
M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no. 3, 030001 (2018)
- Recently, several decays of charmonium vector mesons $\left(J / \psi, \psi^{\prime}\right)$ to light pseudo-scalar mesons are studied in theory and observed by BESIII experiment. J.Fu, H.B.Li, X. Qin and M.Z.Yang, Mod.Phys.Lett.A27,125022(2012) M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 89, no. 9, 092008 (2014) M. Ablikim et al. [BESIII Collaboration], Phys. Lett. B 783, 452 (2018)
- This is the first time to measurement the branching fraction of $B\left(\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}\right)$ at BESIII.

| Decay mode | Branching fraction | $\frac{\Gamma\left(V \rightarrow P l^{+} l^{-}\right)}{\Gamma(V \rightarrow P \gamma)}$ |
| :--- | :---: | :---: |
| $\rho^{0} \rightarrow \pi^{0} e^{+} e^{-}$ | $<1.2 \times 10^{-5}$ | $<2.6 \times 10^{-2}$ |
| $\omega \rightarrow \pi^{0} e^{+} e^{-}$ | $(7.7 \pm 0.6) \times 10^{-4}$ | $(0.91 \pm 0.08) \times 10^{-2}$ |
| $\omega \rightarrow \pi^{0} \mu^{+} \mu^{-}$ | $(1.34 \pm 0.18) \times 10^{-4}$ | $(0.16 \pm 0.02) \times 10^{-2}$ |
| $\phi \rightarrow \pi^{0} e^{+} e^{-}$ | $\left(1.33_{-0.10}^{+0.07}\right) \times 10^{-5}$ | $\left(1.02_{-0.09}^{+0.07}\right) \times 10^{-2}$ |
| $\phi \rightarrow e^{+} e^{-}$ | $(1.08 \pm 0.04) \times 10^{-4}$ | $(0.83 \pm 0.03) \times 10^{-2}$ |
| $\phi \rightarrow \eta \mu^{+} \mu^{-}$ | $<9.4 \times 10^{-6}$ | $<0.07 \times 10^{-2}$ |
| $J / \psi \rightarrow \pi^{0} e^{+} e^{-}$ | $(7.6 \pm 1.4) \times 10^{-7}$ | $\left(2.18_{-0.445}^{+0.45}\right) \times 10^{-2}$ |
| $J / \psi \rightarrow \eta e^{+} e^{-}$ | $(1.16 \pm 0.09) \times 10^{-5}$ | $(1.05 \pm 0.09) \times 10^{-2}$ |
| $J / \psi \rightarrow \eta^{\prime} e^{+} e^{-}$ | $(5.81 \pm 0.35) \times 10^{-5}$ | $(1.13 \pm 0.08) \times 10^{-2}$ |
| $\psi^{\prime} \rightarrow \eta^{\prime} e^{+} e^{-}$ | $(1.90 \pm 0.27) \times 10^{-6}$ | $(1.53 \pm 0.22) \times 10^{-2}$ |

## Data Sample

- Data:
- $(448.1 \pm 2.9) \times 10^{6} \psi^{\prime}$ events taken at $\sqrt{s}=3.686 \mathrm{GeV}$ in 2009 $\left((107.0 \pm 0.8) \times 10^{6}\right)$ and $2012\left((341.1 \pm 2.1) 10^{6}\right)$.
- $44.49 \mathrm{pb}^{-1}$ QED continuum data taken at $\sqrt{s}=3.650 \mathrm{GeV}$ in 2009
- Monte Carlo:
- Official 506 Million inclusive Monte Carlo sample
- Exclusive Monte Carlo Sample:

| Decay chain |  | Generated |
| :---: | :---: | :---: |
| $\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}, \quad \eta_{c} \rightarrow X$ | $1 \times 10^{7}$ | Description |

- In simulation, $\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}$ is generated with the "DalitzJPLL" generator. arXiv:1904.06085 [hep-ph]

$$
\begin{equation*}
\frac{d \Gamma\left(\psi \rightarrow P l^{+} l^{-}\right)}{d \cos \theta} \sim 1+\cos ^{2} \theta \tag{2}
\end{equation*}
$$

- BOSS version : 6.6.4.p03


## Analysis Method

- In this EM Dalitz decay, $\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}$, we have the following formula:

$$
\begin{equation*}
N_{\mathrm{sig}}^{\mathrm{obs}}=N_{\psi^{\prime}} \cdot \mathcal{B}_{\mathrm{sig}} \cdot \varepsilon_{\mathrm{sig}}, \tag{3}
\end{equation*}
$$

where $N_{\text {sig }}^{\mathrm{obs}}$ is the observed signal events, $N_{\psi^{\prime}}$ is the total number of $\psi^{\prime}$ event, $\mathcal{B}_{\text {sig }}$ is the branching fraction the measured signal mode, and $\varepsilon_{\text {sig }}$ is the reconstruction efficiency of the signal mode.

- To observe more signal events and improve the statistical significance, we just reconstruct the lepton pair instead of reconstructing the $\eta_{c}$ to improve the efficiency $\varepsilon_{\text {sig }}$.
- After reconstructing the lepton pair, we look at the recoiling mass of the lepton pair, $R M\left(e^{+} e^{-}\right)$, to obtain the signal yields.

$$
\begin{equation*}
R M\left(e^{+} e^{-}\right)=\sqrt{\left(E_{\psi^{\prime}}-E_{e^{+}}-E_{e^{-}}\right)^{2}-\left(\mathbf{p}_{\psi^{\prime}}-\mathbf{p}_{e^{+}}-\mathbf{p}_{e^{-}}\right)^{2}} \tag{4}
\end{equation*}
$$

## Event Selection

- Good Charged Tracks Selection
- distance of the track from interaction position on x-y plane: $\left|R_{x y}\right|<1 \mathrm{~cm}$
- distance of the track from interaction position in z direction: $\left|R_{z}\right|<10 \mathrm{~cm}$
- the polar angle of the track: $|\cos \theta|<0.93$
- Electron/Positron PID
$-\mathrm{dE} / \mathrm{dx}+\mathrm{TOF}+\mathrm{EMC}$
$-\frac{\operatorname{prob}(\mathrm{e})}{\operatorname{prob}(\mathrm{e})+\operatorname{prob}(\pi)+\operatorname{prob}(\mathrm{K})}>0.8$
- $N_{e^{+}}>=1$ and $N_{e^{-}}>=1$
- $\left|\mathbf{p}_{e^{+}}\right|<0.8 \mathrm{GeV}$
- Loop all $e^{+}$and $e^{-}$pairs


## Suppess $\gamma$ Conversion Events

- In the process with one or more photons, the photon will subsequently convert into an electron-positron pair in the beam pipe or inner of MDC.
- $R_{x y}$ is the distance from the reconstructed vertex point of electron-positron pair to point $(0,0,0)$ in $x-y$ plane.
- We require $R_{x y}<2 \mathrm{~cm}$ to suppress $\gamma$ conversion events,



## Requirement on $\theta\left(e^{+} e^{-}\right)$

- To further suppress background, we require $\theta\left(e^{+} e^{-}\right)<40^{\circ}$
- Background yields reduce $49.0 \%$, while signal yield reduce $14.8 \%$.



## Veto $\pi^{0} / \eta \rightarrow \gamma e^{+} e^{-}$Events

- $M\left(\gamma e^{+} e^{-}\right)$is the invariant mass of the electron-positron pair and any selected photon in one event.
- We veto the event, if $M\left(\gamma e^{+} e^{-}\right)$is in the mass window of $\pi^{0}$ or $\eta$ (i.e. $(0.115,0.150) \mathrm{GeV}$ or $(0.505,0.570) \mathrm{GeV})$.



## Veto $\psi^{\prime} \rightarrow \pi^{+} \pi^{-} J / \psi$ Events

- We loop all good positive-charge-track and negative-charge-track pairs (including the electron-positron pair) and suppos they are $\pi^{+}-\pi^{-}$pair.
- We veto the event, if $R M\left(\pi^{+} \pi^{-}\right)$in the mass window of $J / \psi$ ( i.e. $\left.(3.090,3.104) \mathrm{GeV} / \mathrm{c}^{2}\right)$.



## Background Distribution I

- An unbinned maximum likelihood fit to $R M\left(e^{+} e^{-}\right)$is performed to obtain signal yield
- The distribution of $R M\left(e^{+} e^{-}\right)$for inclusive MC indicates that background from $\psi^{\prime}$ is a flat distribution, and it can be described by the third order Chebyshev polynomial.



## Background Distribution II

- A possible peaking background comes from continuum two photon process $e^{+} e^{-} \rightarrow e^{+} e^{-} \eta_{c}$.
- We fit data taken at $\sqrt{s}=3.65 \mathrm{GeV}$.

The signal shape is described by the shape derived from signal MC convoluted with a Gaussian function. The background shape is described by the third order Chebychev polynomial function.


## Background Distribution III

- Then we use the following formula

$$
\begin{equation*}
N_{3.686}^{\mathrm{com}} \approx N_{3.65}^{\mathrm{com}} \cdot \frac{\mathcal{L}_{3.686}}{\mathcal{L}_{3.65}} \cdot \frac{m_{3.65}^{2}}{m_{3.686}^{2}} \tag{5}
\end{equation*}
$$

and obtain $N_{3.686}^{\text {com }} \approx(378 \pm 293)$

- Actually, $\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \eta_{c}\right)_{3.77} \approx 0.0016 \mathrm{nb}$
D. M. Asner et al., Int. J. Mod. Phys. A 24, S1 (2009)
- Using the formula $\frac{\sigma_{1}}{\sigma_{2}} \approx \frac{1 / s_{1}}{1 / s_{2}}$, we can derive that $\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \eta_{c}\right)_{3.686} \approx 0.00167 \mathrm{nb}$.
- With integrated luminosity $\mathcal{L}_{3.686}$ ( about $695 \mathrm{pb}^{-1}$ ), we can estimate that $N\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \eta_{c}\right)_{3.686} \approx 1163$
- With the $\epsilon \approx 20 \%$, we can estimate that $N\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \eta_{c}\right)_{3.686}^{\text {observe }} \approx 232$, which is consistent with the number above.
- The two photon process is described by the shape determined from data taken at $\sqrt{s}=3.65 \mathrm{GeV}$ with the number of events fixed at scaled value $N_{3.686}^{\mathrm{com}}=378$.


## Input and Output Check

- Input: $B\left(\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}\right)=2.0 \times 10^{-4}$
0.08 M signal Monte Carlo +400 M official inclusive Monte Carlo.
- Efficiency $\epsilon=18.04 \%$
- Output: $B\left(\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}\right)=(1.99 \pm 0.04) \times 10^{-4}$.
- IO result keeps consistent within statistical uncertainty.



## Branching Fraction $B\left(\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}\right)$

- The Branching fraction is $B\left(\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}\right)=(4.20 \pm 0.62) \times 10^{-5}$.
- The statistical significance of this channel is $29.2 \sigma$.


Figure: Distribution of $R M\left(e^{+} e^{-}\right)$in $\psi^{\prime}$ data. The signal shape is described by Monte Carlo shape function smeared with a Gaussian function, background shape is described by a third order Chebychev polynomial function added the shape, which is determined from QED continuum data with the number of events fixed at scaled value $N_{3.686}^{\mathrm{com}}$.

## Systematic Uncertainties I

- The tracking efficiency of electron has been studied in process $J / \psi \rightarrow e^{+} e^{-}\left(\gamma_{F S R}\right)$ and $\psi^{\prime} \rightarrow \pi^{+} \pi^{-} J / \psi, J / \psi \rightarrow l^{+} l^{-}$. And the uncertainty is set to be $1.0 \%$ per track.
BAM-00237, BAM-00222
- The PID efficiency of electron are by analyzing radiative Bhabha events at $\sqrt{s}=3.686 \mathrm{GeV}$. To acquire the uncertainties, we weight the PID efficiencies in different $\cos \theta$ and total momentum $|\mathbf{p}|$. The total total uncertainties are obtained by the following equation

$$
\begin{equation*}
\Delta \epsilon^{\mathrm{PID}}=\sum_{i, j}\left(\Delta \epsilon_{i j}^{\mathrm{PID}} \times \omega_{i j}^{\mathrm{PID}}\right) \tag{6}
\end{equation*}
$$

And the uncertainties is set to be $1.2 \%$ per track.

## Systematic Uncertainties II

- $\gamma$ conversion cut

The systematic uncertainty due to $\gamma$ conversion cut $R_{x y}<2$ is $1.0 \%$, which has been studied with a highly pure sample of $J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \rightarrow \gamma e^{+} e^{-}$. M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 89, no. 9, 092008 (2014)

- $\theta_{e^{+} e^{-}}$cut

We vary the cut value in the range $(35,45)$ and use the maximum change of branching fraction as the systematic uncertainty. The uncertainties is set to be $5.7 \%$

## Systematic Uncertainties III

- veto $\pi^{0} \rightarrow \gamma e^{+} e^{-}$

We change the cut value within $\pm 1 \sigma$ and use the maximum change of branching fraction as the systematic uncertainty. The uncertainties is set to be $3.5 \%$

- veto $\eta \rightarrow \gamma e^{+} e^{-}$

We change the cut value within $\pm 1 \sigma$ and use the maximum change of branching fraction as the systematic uncertainty. The uncertainties is set to be $4.0 \%$

- veto $\psi^{\prime} \rightarrow \pi^{+} \pi^{-} J / \psi$

We change the cut value within $\pm 1 \sigma$ and use the maximum change of branching fraction as the systematic uncertainty. The uncertainties is set to be $0.7 \%$

## Systematic Uncertainties IV

Table: Summary of systematic uncertainties

| Source | $B\left(\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}\right)$ |
| :---: | :---: |
| Tracking | $2.0 \%$ |
| PID | $2.4 \%$ |
| $R_{x y}$ cut | $1.0 \%$ |
| $\theta_{e^{+}} e^{-}$cut | $5.7 \%$ |
| veto $\pi^{0} \rightarrow \gamma e^{+} e^{-}$ | $3.5 \%$ |
| veto $\eta \rightarrow \gamma e^{+} e^{-}$ | $4.0 \%$ |
| veto $\psi^{\prime} \rightarrow \pi^{+} \pi^{-} J / \psi$ | $0.7 \%$ |
| Total | $8.5 \%$ |

## Summary

- We obtain the branching fraction $B\left(\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}\right)=(4.20 \pm 0.62 \pm 0.36) \times 10^{-5}$.
- With the branching fraction of $B\left(\psi^{\prime} \rightarrow \gamma \eta_{c}\right)$ in PDG, we obtain the ratio

$$
\begin{aligned}
R= & \frac{\Gamma\left(\psi^{\prime} \rightarrow e^{+} e^{-} \eta_{c}\right)}{\Gamma\left(\psi^{\prime} \rightarrow \eta_{c}\right)}=(1.2 \pm 0.27) \times 10^{-2} \\
& \text { Thank You! }
\end{aligned}
$$

## BACK UP

## "DalitzJPLL" Generator

arXiv:1904.06085

$$
\begin{align*}
\mid T(\psi \rightarrow & \left.P l^{+} l^{-}\right)\left.\right|^{2}=16 \pi^{2} \alpha^{2} \frac{\left|f_{V P}\left(q^{2}\right)\right|^{2}}{q^{4}} \cdot h_{\mathrm{T}}  \tag{8}\\
h_{\mathrm{T}}= & 2 m_{\psi}^{2} \times\left\{k_{1} \cdot k_{2}\left(q_{x}^{2}+q_{y}^{2}+2 q_{z}^{2}\right)\right. \\
& +2 q_{z}^{2}\left(k_{1 x} k_{2 x}+k_{1 y} k_{2 y}\right) \\
& -2 q_{z} k_{2 z}\left(k_{1 x} q_{x}+k_{1 y} q_{y}\right)  \tag{9}\\
& -2 q_{z} k_{1 z}\left(k_{2 x} q_{x}+k_{2 y} q_{y}\right) \\
& +2 k_{1 z} k_{2 z}\left(q_{x}^{2}+q_{y}^{2}\right) \\
& \left.+m_{l}^{2}\left(q_{x}^{2}+q_{y}^{2}+2 q_{z}^{2}\right)\right\}
\end{align*}
$$

## "DalitzJPLL" Generator



## Distribution of $\cos \theta$





