Search for $X(3872) \rightarrow \pi^{0} \pi^{0} \chi_{c J}$
 Ryan Mitchell Joshua Jackson
 Indiana University
 June 2019

Motivation

- Explore evidence for opposing interpretations of X (3872).
- If $X(3872)$ is a charmonium state ${ }^{1}$:
- Expect two-pion transitions to $\chi_{c J}$ from $X(3872)$ to be enhanced relative to single-pion transitions (by a factor of 25).
- Expect production of $\chi_{c 1}$ to be dominant with $\Gamma\left(X(3872) \rightarrow \pi^{0} \pi^{0} \chi_{c 1}\right) \sim 1 \mathrm{keV}$.
- If $X(3872)$ is a tetraquark:
- Expect production of $\chi_{c 1}$ and $\chi_{c 2}$ to be similar, $\chi_{c 0}$ to be strongly suppressed ${ }^{1}$.
- Expect two-pion transition to $\chi_{c J}$ from $X(3872)$ to be on same order as single-pion transition ${ }^{2}$.

[^0]
Final State

$$
\begin{aligned}
e^{+} e^{-} & \rightarrow \gamma X(3872) \\
X(3872) & \rightarrow \pi^{0} \pi^{0} \chi_{c J} \\
\chi_{c J} & \rightarrow \gamma J / \psi \\
J / \psi & \rightarrow l^{+} l^{-}
\end{aligned}
$$

Final State: $l^{+} l^{-} \gamma \gamma \pi^{0} \pi^{0}$

Four different types of MC were generated.

$Y(4260)$ without ISR

- $e^{+} e^{-} \rightarrow \omega \chi_{c J}$
- $e^{+} e^{-} \rightarrow \eta J / \psi$
- $e^{+} e^{-} \rightarrow \eta^{\prime} J / \psi$
$Y(4260)$ with ISR
- $e^{+} e^{-} \rightarrow \pi \pi J / \psi$

ISR where $e^{+} e^{-} \rightarrow \gamma \psi^{\prime}$
X (3872) with $e^{+} e^{-} \rightarrow \gamma X$ (3872)

- $X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi$
- $X(3872) \rightarrow \pi^{0} \chi_{c J}$
- $X(3872) \rightarrow \gamma \psi^{\prime}$
- $X(3872) \rightarrow \gamma J / \psi$
- $X(3872) \rightarrow \omega J / \psi$

Model background, including continuum, with J / ψ sideband: $35 \mathrm{MeV}<\left|M\left(l^{+} l^{-}\right)-M(J / \psi)\right|<95 \mathrm{MeV}$

Compatibility between MC and data was verified with an $\eta J / \psi$ cross check.

- Want to verify that exclusive MC agrees with data.
- Use all of the data with E^{*} between 4.15 GeV and 4.30 GeV .
- Check against $e^{+} e^{-} \rightarrow \eta J / \psi, \eta \rightarrow 3 \pi^{0}$ and $e^{+} e^{-} \rightarrow \eta^{\prime} J / \psi, \eta^{\prime} \rightarrow \pi^{0} \pi^{0} \eta$
- Roughly select $\chi^{2} / D O F<10$ for kinematic fit.
- Select $M\left(l^{+} l^{-}\right)$within 30 MeV of J / ψ mass.
- Select sideband with $M\left(l^{+} l^{-}\right)$between 35 MeV and 95 MeV from J / ψ mass.
- For $\eta J / \psi$, select $M(\gamma \gamma)$ within 10 MeV of π^{0} mass.
- For $\eta^{\prime} J / \psi$, select $M(\gamma \gamma)$ within 50 MeV of η mass.
- This is the only time we look at data!

Compatibility between MC and data was

 verified with an $\eta J / \psi$ cross check.

Pre-selection Cuts

- Center of Mass Energy:

$$
4.15 \mathrm{GeV}<E^{*}<4.30 \mathrm{GeV}
$$

- Shower Selection:

$$
\begin{gathered}
0<T<14 \\
E_{\text {endcap }}>50 \mathrm{MeV} \text { or } E_{\text {barrel }}>25 \mathrm{MeV}
\end{gathered}
$$

- Track Selection:

$$
\begin{gathered}
z<10 \mathrm{~cm} \text { and } r<1 \mathrm{~cm} \\
|\cos \theta|<0.93
\end{gathered}
$$

- Signal Region:

$$
\begin{aligned}
& 3.75 \mathrm{GeV}<M_{\text {recoil }}\left(\gamma_{1}\right)<4.00 \mathrm{GeV} \\
& 3.35 \mathrm{GeV}<M\left(\gamma_{2} l^{+} l^{-}\right)<3.60 \mathrm{GeV}
\end{aligned}
$$

Additional Cuts

- Electron Selection:

$$
(E / p)^{+}>0.85 \text { or }(E / p)^{-}>0.85
$$

- Muon Selection:

$$
(E / p)^{+}<0.25 \text { and }(E / p)^{-}<0.25
$$

- J / ψ Selection:

$$
\left|M\left(l^{+} l^{-}\right)-M(J / \psi)\right|<30 \mathrm{MeV}
$$

- J / ψ Sideband:

$$
35 \mathrm{MeV}<\left|M\left(l^{+} l^{-}\right)-M(J / \psi)\right|<95 \mathrm{MeV}
$$

Phase Space

Signal MC

Background MC

Choosing the best $\chi_{C J}$ combination

- Choose the best $\chi_{c J}$ combination by selecting the $\gamma l^{+} l^{-}$combination which is closest to the PDG mass of $\chi_{c J}$ in the appropriate J region.
- Only two possible combinations since we have two photons in the final state.

Without choosing best $\chi_{c J}$ combination.

Choosing best $\chi_{c J}$ combination.

The broad $\chi_{c J}$ region is split into three narrow regions corresponding to each J.

- Not sensitive to $J=0$
- $J=1$: $(3.49 \mathrm{GeV}, 3.53 \mathrm{GeV})$
- $J=2:(3.54 \mathrm{GeV}, 3.58 \mathrm{GeV})$

Choosing the best $\chi_{C J}$ combination

- Choose the best $\chi_{c J}$ combination by selecting the $\gamma l^{+} l^{-}$combination which is closest to the PDG mass of $\chi_{c J}$ in the appropriate J region.
- Only two possible combinations since we have two photons in the final state.

Without choosing best $\chi_{c J}$ combination.

Choosing best $\chi_{c J}$ combination.

The broad $\chi_{c J}$ region is split into three narrow regions corresponding to each J.

- Not sensitive to $J=0$
- $J=1$: $(3.49 \mathrm{GeV}, 3.53 \mathrm{GeV})$
- $J=2:(3.54 \mathrm{GeV}, 3.58 \mathrm{GeV})$

Cut Optimization: Kinematic Fit $\chi^{2} / D O F$

Figure of Merit for χ^{2} / Degree of Freedom

Cut Optimization: $\eta \rightarrow \gamma \gamma \pi^{0} \pi^{0}$ Veto

Eliminates $e^{+} e^{-} \rightarrow \eta J / \psi$ events.

Cut Optimization: $\eta \rightarrow \gamma \gamma$ Veto

Figure of Merit for $\left|\mathrm{M}\left(\gamma_{1} \gamma_{2}\right)-\mathrm{M}(\eta)\right|$

Eliminates $e^{+} e^{-} \rightarrow \eta^{\prime} J / \psi$ events.

Cut Optimization: ψ^{\prime} Veto

Eliminates $e^{+} e^{-} \rightarrow \pi \pi \psi^{\prime}$ events.

The π^{0} veto only diminishes the FOM.

Thus we elect not to use the π^{0} veto.

Signal Region

Includes all pre-selection cuts as well as:

- Kinematic Fit $\chi^{2} / D O F<6$
- Veto $M(\gamma \gamma)$ within 20 MeV of η mass.
- Veto $M\left(\gamma \gamma \pi^{0} \pi^{0}\right)$ within 30 MeV of η mass.
- Veto $M\left(\gamma \gamma l^{+} l^{-}\right)$within 30 MeV of ψ^{\prime} mass.
- Best $\chi_{c J}$ combination.

Predicts roughly:

- 13 signal events
- 11 background events

Includes all pre-selection cuts as well as:

- Kinematic Fit $\chi^{2} / D O F<6$
- Veto $M(\gamma \gamma)$ within 20 MeV of η mass.
- Veto $M\left(\gamma \gamma \pi^{0} \pi^{0}\right)$ within 30 MeV of η mass.
- Veto $M\left(\gamma \gamma l^{+} l^{-}\right)$within 30 MeV of ψ^{\prime} mass.
- Best $\chi_{c J}$ combination.

Signal Region

* FOM calculated near the signal peak: 3.85 GeV to 3.91 GeV

Sideband Check

$\mathrm{X}(3872)$ Mass Sideband with Data $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

- Compare data to MC in region defined by a recoil mass of 50 MeV or more from 3872 MeV in any direction.
- No data in mass region less than signal peak - agrees with MC.
- 4 events in viewing window greater than signal region
- MC predicts roughly 9 events in this region.

Next Steps

- Perform toy fits using small portion of signal MC.
- Use signal MC shape to fit signal peak.
- Check for fit stability by varying which portion of signal MC we use.
- Approach committee before unblinding data.

$$
\text { Final State: } l^{+} l^{-} \gamma \gamma \pi^{0} \pi^{0}
$$

Questions

References

${ }^{1}$ S. Dubynskiy and M. B. Voloshin. "Pionic transitions from $X(3872)$ to $\chi_{c J}{ }^{\prime}$. In: Phys. Rev. D 77 (1 Jan. 2008), p. 014013 . DOI: 10.1103/PhysRevD.77.014013. URL: https://link.aps.org/doi/10.1103/PhysRevD.77.014013.
${ }^{2}$ Sean Fleming and Thomas Mehen. "Hadronic decays of the $X(3872)$ to $\chi_{c J}$ in effective field theory". In: Phys. Rev. D 78 (9 Nov. 2008), p. 094019. DOI: 10.1103/PhysRevD.78.094019. URL: https://link.aps.org/doi/10.1103/PhysRevD.78.094019.

[^0]: ${ }^{1}$ S. Dubynskiy and M. B. Voloshin. "Pionic transitions from $X(3872)$ to $\chi_{c J}{ }^{\prime}$ ". In: Phys. Rev. D 77 (1 Jan. 2008), p. 014013.
 ${ }^{2}$ Sean Fleming and Thomas Mehen. "Hadronic decays of the $X(3872)$ to $\chi_{c J}$ in effective field theory". In: Phys. Rev. D 78 (9 Nov. 2008), p. 094019.

