Measurement of the branching fraction of $J/\psi \rightarrow \phi \eta$

Nefedov Yury, Bakina Olga, Boyko Igor, Wang Ping

June 2019

Motivation I

Improved estimation of the mixing angle between strong and electromagnetic amplitudes in $J/\psi\to\phi\eta$ decay

Formulas of cross section for lineshape fit of $J/\psi \rightarrow \phi \eta$

$$\begin{aligned} \sigma_{\text{born}}(s) &= |\mathcal{A}_{cont.} + \mathcal{A}_{\gamma} + \mathcal{A}_{3g}|^2 \\ &= \frac{\sigma_0}{s^2} \left| 1 + \frac{3/\alpha \sqrt{s \, \Gamma_e \Gamma_\mu}}{(s - M^2) + i \, \sqrt{s} \, \Gamma} \cdot (1 + A e^{i \, \varphi}) \right|^2 \times \left[\frac{|P|}{\sqrt{s}} \right]^3 \end{aligned}$$

where σ_0 can be expressed through the $Br(J/\psi \rightarrow \phi \eta)$:

$$\sigma_0 = \frac{4\pi\alpha^2 s}{3} \cdot \frac{Br(J/\psi \to \phi\eta)}{Br(J/\psi \to \mu\mu)} \cdot \frac{1}{|1 + Ae^{i\,\varphi}|^2} \left[\frac{\sqrt{s}}{|P|}\right]^2$$

 \checkmark The value of the $Br(J/\psi \rightarrow \phi \eta)$ is obtained directly from the fit

Motivation I

Motivation I

Include PDG val. in fit $\chi^2(new) = \chi^2(old) + \frac{|Br(fit) - Br(PDG)|^2}{\sigma^2(PDG)}$

$$Br(PDG) = (7.5 \pm 0.8) \times 10^{-4}$$

Fit result:

 $Br = (9.8 \pm 0.4) \times 10^{-4}$

 $\varphi = 2.58 \pm 0.33$

✓ Error on φ is reduced by factor 2.5

Motivation II

The existing measurements of $Br(J/\psi \rightarrow \phi \eta)$ are ambiguous (PDG-2019)

Data & Monte-Carlo samples

Measurements are performed in the decay chain: $\psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \phi\eta, \phi \rightarrow K^+K^-, \eta \rightarrow \gamma\gamma.$

- We used DST for $\psi(3686)$ 2009 and 2012.
- We used a continuum sample at 3.65 GeV to estimate the background from non resonant production.
- We used $\psi(3686)$ inclusive Monte Carlo simulated data for 2009 and 2012 (official samples).
- We generated signal MC data with BesEvenGen.
- We used two versions of the BOSS software
 - ▶ 6.6.4p1 for 2009: data, MC and continuum sample
 - ▶ 6.6.4p3 for 2012: data and MC

Event Selection I: $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$

At least two opposite charged soft pions:

- $|R_{xy}| \leq 1$ cm; $|R_z| \leq 10$ cm
- $cos(\Theta) \leq 0.80$
- PID: $Prob(\pi) > max(Prob(K), Prob(proton), 0.001)$
- $P_{\pi} < 0.45~{
 m GeV}/c$

We consider a good pair of $\pi^+\pi^-$ if:

- $\cos(\Theta_{\pi^+\pi^-}) < 0.80$ (to suppress pions flying in one direction)
- $|M^{inv}_{\pi^+\pi^-} M(K^0_S)| > 0.008~{
 m GeV}/c^2$ (to suppress pions from K^0_s)

•
$$3.0 \leqslant M_{\pi^+\pi^-}^{rec} \leqslant 3.2 \text{ GeV}/c^2$$

where the recoil mass is: $M_{\pi^+\pi^-}^{rec} = \sqrt{(P_{ecm} - p_{\pi^+} - p_{\pi^-})^2}$

Selection $\pi^+\pi^-$: data vs MC

- Good agreement between data and inclusive MC
- The 2009 distributions are almost identical

Selection $\pi^+\pi^-$: data vs MC

- Good agreement between data and inclusive MC
- The 2009 distributions are almost identical

Recoil mass of $\pi^+\pi^-$: data vs MC

• These distributions were used to estimate the number of J/ψ in our selection

Estimation of the number of J/ψ

Side-Band Method

• Fit data in the region far from the J/ψ peak: $M_{\pi^+\pi^-}^{rec} \in [3.00; 3.06] \cup [3.14; 3.20] \text{ GeV}/c^2$

• The fitting function is:

 $MC(Bkg) \times P_3(M_{\pi^+\pi^-}^{rec} - 3.1) + Cont + MC(Sig),$

- ▶ *MC*(*Bkg*) is the sum of the background distributions
- $P_3(x)$ is the third order polynomial
- Cont is the non-resonance production
- MC(Sig) is the signal distribution
- The number of J/ψ is calculated as the number of data minus the fitted background

The side-band fit of $M_{\pi^+\pi^-}^{rec}$

$M_{\pi^+\pi^-}^{rec}$ (GeV/ c^2)	$N(J/\psi)$ in 2009	$N(J/\psi)$ in 2012
[3.055, 3.145]	17839834 ± 8108	55383311 ± 14357
[3.092, 3.102]	15738304 ± 4603	$48669687 \pm \ 8111$

Systematic uncertainties in the side-band fit

Variation of polynomial order (P-degree) and fit range

	P-degree	fit range (GeV/ c^2)	$\chi^2/{ m ndf}$	$N_{J/\psi}$	$\delta(\%)$
2009	3	[3.00,3.06] U [3.14,3.20]	109/116	17839834	—
	2	[3.00,3.06] U [3.14,3.20]	115/117	17834768	0.03
	4	[3.00,3.06] U [3.14,3.20]	107/115	17805529	0.19
	3	[3.00,3.05] U [3.15,3.20]	91/96	17850882	0.06
	3	[3.00,3.07] U [3.13,3.20]	140/136	17818151	0.12
2012	3	[3.00,3.06] U [3.14,3.20]	124/116	55383311	—
	2	[3.00,3.06] U [3.14,3.20]	129/117	55373982	0.02
	4	[3.00,3.06] U [3.14,3.20]	122/115	55340269	0.08
	3	[3.00,3.05] U [3.15,3.20]	104/96	55415283	0.06
	3	[3.00,3.07] U [3.13,3.20]	177/136	55330721	0.09

- numbers are given for «wide interval» $M_{\pi^+\pi^-}^{rec} \in [3.055, 3.145] \text{GeV}/c^2$
- for a narrower interval the error is much smaller

Second method for estimation of the number of J/ψ

Fit method

- Fit data in the entire range of $M^{rec}_{\pi^+\pi^-}$
- The fitting function is:

$$MC(Bkg) \times P_3(M_{\pi^+\pi^-}^{rec} - 3.1) + Cont + Sig(M_{\pi^+\pi^-}^{rec})$$

Sig(m) = S × MC(Sig) \otimes (f · G(m, \sigma_1) + (1 - f) · G(m, \sigma_2))

- ► MC(Sig) is the signal distribution convolving with the sum of two Gaussian functions G(m, σ)
- σ_1 , σ_2 , f and S are the parameters of the fit
- The number of J/ψ is calculated as the integral of $Sig(M_{\pi^+\pi^-}^{rec})$ in the corresponding window

The fit of $M_{\pi^+\pi^-}^{rec}$ in the entire range

$M^{ m rec}_{\pi^+\pi^-}~({ m GeV}/c^2)$	$N(J/\psi)$ in 2009	δ (%)	$N(J/\psi)$ in 2012	δ (%)
[3.055, 3.145]	17603315 ± 4161	1.3	54740554 ± 6751	1.2
[3.092, 3.102]	15703865 ± 3929	0.22	48560298 ± 6357	0.22

• δ is the difference from side-band method

Number of ψ (3686) $\rightarrow \pi^+\pi^- J/\psi$ events

Summary: $Br \equiv Br(\psi' \rightarrow \pi^+\pi^- J/\psi)$

	$M^{ m rec}_{\pi^+\pi^-}~({ m GeV}/c^2)$	$N(J/\psi)$	$\delta_{sys}(\%)$	$\varepsilon(\%)$	Br (%)
2009	[3.055, 3.145]	17839834	1.3	47.80 ± 0.28	34.9 ± 0.5
	[3.092, 3.102]	15738304	0.22	42.65 ± 0.26	34.5 ± 0.3
2012	[3.055, 3.145]	55383311	1.2	45.99 ± 0.28	35.3 ± 0.5
	[3.092, 3.102]	48669687	0.22	40.80 ± 0.24	35.0 ± 0.3

• Numbers will be used in the rest of this presentation

• Selection efficiency ε was obtained from inclusive MC with corrections on pion tracking efficiency

Notes on branching ratio $Br(\psi' \rightarrow \pi^+\pi^- J/\psi)$

- The systematic errors are dominant
- ✓ Good agreement of branching obtained in wide and narrow intervals: errors are fully correlated and therefore $\sigma_{\Delta} = \sqrt{|\sigma_1^2 \sigma_2^2|} = 0.4\%$
- $\checkmark\,$ Good agreement between 2009 and 2012
- ✓ Good agreement with previous BES-3 result based on the same 2009 data: $B(\psi' \rightarrow \pi^+\pi^- J/\psi) = (34.98 \pm 0.02 \pm 0.45)\%$

Event Selection: $J/\psi \rightarrow \phi \eta \ (\phi \rightarrow K^+ K^-; \ \eta \rightarrow \gamma \gamma)$

Charged tracks

- \bullet We choose $\pi^+\pi^-$ with ${\it M}_{\pi^+\pi^-}^{\it rec}$ closest to the mass of J/ψ
- $M^{rec}_{\pi^+\pi^-} \in [3.092, 3.102] \; {
 m GeV}/c^2$
- In addition to the selected pions there must be two opposite charged kaons:
 - ▶ $|R_{xy}| \le 1$ cm; $|R_z| \le 10$ cm
 - $cos(\Theta) \leq 0.80$
 - ▶ PID: $Prob(K) > max(Prob(\pi), Prob(proton), 0.001)$

At least two photons:

- $E_{\gamma} > 25$ MeV (barrel EMC) or $E_{\gamma} > 50$ MeV (end-cap EMC)
- $lpha_\gamma > 10^\circ\,$ for the angle relative to the nearest charged track

Event Selection: $\psi' \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \phi \eta$

5C kinematic constraints

- the 4-momentum of the system $\pi^+\pi^-K^+K^-2\gamma$ should be P_{ecm}
- the invariant mass $M^{inv}(K^+K^-2\gamma)$ should be $M_{J/\psi}$
- we choose two photons with minimal χ^2_{5C}
- the event is discarded if $\chi^2_{5C} > 80$
- the event is discarded if there is a third photon such that: $\chi^2_{5C}(\pi^+\pi^-K^+K^-3\gamma) < \chi^2_{5C}(\pi^+\pi^-K^+K^-2\gamma)$

Invariant masses $M_{K^+K^-}^{inv}$ vs $M_{\gamma\gamma}^{inv}$; Data and MC

- Inclusive MC does not contain $K^+K^-\eta$ events above M_ϕ
- We generated MC data with final state $K^+K^-\eta$ (background MC) using BesEvenGen

Invariant mass of $\eta \rightarrow \gamma \gamma$

- The distributions fit with Gauss: $\sigma(\eta) \sim 8$ MeV
- The dashed lines show the selection window and side bands

$\chi^2(5C)$ for signal and side-band events

Good agreement between data and signal MC

Invariant mass of $\phi \rightarrow K^+ K^-$

- The data appears to be shifted to the right relative of the MC curve
- This is consistent with interference of $KK(\phi) KK(non \ resonant)$
- The effect was ignored in all previous measurements
- BESIII precision is so high that we must take into account the interference effect

Fit of $M_{K^+K^-}^{inv}$

Resonant part

• the relativistic Breit-Wigner corrected for the phase space:

$$\mathcal{BW}_{\phi}(m)=rac{\kappa f^2(m)}{(m^2-M_{\phi}^2)^2+m^2\,\Gamma^2(m)},$$

where energy dependant width $\Gamma(m)$ is

$$\Gamma(m) = \Gamma_{\phi} \left(\frac{p_{\kappa}(m)}{p_{\kappa}(M_{\phi})}\right)^{3} \frac{M_{\phi}}{m} \frac{B(p_{\kappa}(m))}{B(p_{\kappa}(M_{\phi}))},$$

f(m) is correction factor and B(p) is Blatt-Weisskopf penetration form factor:

$$f(m) = \frac{p_{\phi}(m)}{p_{\phi}(M_{\phi})} \frac{p_{\kappa}(m)}{p_{\kappa}(M_{\phi})} \frac{B(p_{\phi}(m))}{B(p_{\phi}(M_{\phi}))} \frac{B(p_{\kappa}(m))}{B(p_{\kappa}(M_{\phi}))}, \quad B(p) = \frac{1}{\sqrt{1 + (rp)^2}}.$$

Fit of $M_{K^+K^-}^{inv}$

Background:

• reversed Argus function:

$$\mathcal{AR}(m) = m \cdot \exp(A \cdot \log(v) - B \cdot v), \qquad v = 1 - \left(1 - \frac{m - L}{U}\right)^2$$

• Fit of MC $K^+K^-\eta$ background with Argus function

Fit of $M_{K^+K^-}^{inv}$ data by incoherent sum

• The incoherent sum of the Breit-Wigner convoluted with Gauss and Argus function: $\mathcal{BW}_{\phi}(m) \otimes \mathcal{G}(m) + \mathcal{AR}(m)$

In general the data are described poorly: \sim 0.5MeV shift relative to the PDG M_{ϕ}

Fit of $M_{K^+K^-}^{inv}$ data, the interference

• The interference between $\phi\eta$ and $K^+K^-\eta$ final states:

$$\left|\mathcal{A}_{BW}(m) \times N_R \exp(i\,\vartheta) + \sqrt{\mathcal{AR}(m)}\right|^2 \otimes \mathcal{G}(m)$$

- $A_{BW}(m)$ is the Breit-Wigner amplitude
- N_R is the magnitude of the ϕ resonance
- $\blacktriangleright \ \vartheta$ is the mixing angle
- $\mathcal{AR}(m)$ is the Argus function

Fit of $M_{K^+K^-}^{inv}$ data, the interference

- $\chi^2/ndf = 0.96$ for 2009 and 1.2 for 2012
- If M_{ϕ} is a free fit parameter then the fitted value is consistent with the PDG value within the fit error
- Both results are compatible to the zero mixing angle

Combined fit of $M_{K^+K^-}^{inv}$ data

- Both data periods are fitted at the same time
- Background parameters (A, B, Fbkg) and mixing angle are common
- Taking into account the interference changes the N_{ϕ} by $3 \div 4\%$, which is $\sim (1. \div 1.5) \times \sigma(stat)$
- This effect was ignored in all past measurements

Branching fraction of $J/\psi \rightarrow \phi \eta$

Summary

	$N(K^+K^-\gamma\gamma)$	arepsilon(%)	$N(J/\psi)$	$Br(J/\psi o \phi \eta)$
2009	805.3 ± 36.7	32.79 ± 0.17	15738304	$(8.1 \pm 0.4) \times 10^{-4}$
2012	2552.5 ± 88.6	31.90 ± 0.10	48669687	$(8.5 \pm 0.3) \times 10^{-4}$

- \bullet Selection efficiency ε was obtained from signal MC with corrections on kaon tracking efficiency
- We used the following branchings from PDG 2018: $Br(\eta \rightarrow \gamma \gamma) = (39.41 \pm 0.20)\%$ $Br(\phi \rightarrow K^+K^-) = (49.2 \pm 0.5)\%$
- The errors are statistical only

PDG 2018: $Br(J/\psi \rightarrow \phi \eta) = (7.5 \pm 0.8) \times 10^{-4}$

Systematic uncertainties

• Number of J/ψ :

▶ we estimated $\delta_{sys}(N_{J/\psi}) = 0.22\%$ for interval $M_{\pi^+\pi^-}^{rec} \in [3.092, 3.102]$

- Branching fractions (PDG):
 - ► $\delta Br(\phi \rightarrow K^+K^-) \oplus \delta Br(\eta \rightarrow \gamma\gamma) = 1.1\%$
- Track reconstruction efficiency:
 - ► the standard value 2 × 1% looks too big for this analisis, so we performed additional study to estimate difference in reconstruction efficiencies of kaons in data and MC (see the next slide)

• Photon reconstruction efficiency:

▶ 2 × 1%

here we are also trying to do additional study to reduce this error The analysis is not yet complete

• Varing selection critiria:

this part is not complete yet

- varying χ^2 cut
- varying side-band criteria

Difference of tracking efficiency: Data vs MC

- We used process: $\psi' \to \pi^+\pi^- J/\psi$, $J/\psi \to \pi^+\pi^- K^+ K^-$ to measure the track efficiencies of pions and kaons
- For kaons:
 - ► $\pi^+\pi^-$ pair was selected as described in *Levent Selection I* $M_{\pi^+\pi^-}^{rec} \in [3.095, 3.099] \text{ GeV}/c^2$
 - \blacktriangleright "tag" a J/ψ decay by $\pi^+\pi^-{\cal K}^{(\pm)}$ with a missing mass about $M_{\cal K}$
 - \blacktriangleright we checked whether ${\cal K}^{(\mp)}$ was reconstructed or not
- For pions:

 $\epsilon = \frac{N_6}{N_6 + N_5}$

- "tag" a J/ψ event by $\pi^+\pi^-K^+K^-$ with invariant mass: $M^{inv} \in [3.087, 3.105] \text{ GeV}/c^2$
- \blacktriangleright we search for additional $\pi^{(\pm)}$ and the missing mass is about M_{π}
- \blacktriangleright we checked whether $\pi^{(\mp)}$ was reconstructed or not

definition of track reconstruction efficiency ϵ

N₆ — all six tracks reconstructed

$$N_5$$
 — one track (π or K) is missing

Kaons: reconstruction track efficiency in 2012

33 / 38

Kaons: $\epsilon_{DATA}/\epsilon_{MC}$ in 2012

34 / 38

- To improve consistency between data and MC we used re-weighting for $\pi^+\pi^-$ and K^+K^- in MC
- Kolmogorov–Smirnov test showed that ratios of efficiencies for K⁺ and K⁻ have the same distribution (the same fact for π⁺ and π⁻)
- There is no dependence on the polar angle of kaons and pions
- Efficiency corrections were obtained as a function on transverse momentum ${\cal P}_t$

Efficiency corrections in 2012

✓ These corrections have been already applied for calculations of selection efficiencies for $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$ and $J/\psi \rightarrow \phi\eta$ shown above

Kaons: $\epsilon_{DATA}/\epsilon_{MC}$ in 2012 after corrections

Conclusion

• We measured the branching fraction of $J/\psi \rightarrow \phi \eta$: (8.1 ± 0.4)×10⁻⁴ for data 2009 (8.5 ± 0.3)×10⁻⁴ for data 2012

- We continue the work for estimation of systematic uncertainties
- Memo in the process of preparation

prospective result

- We got 0.24×10^{-4} cumulative statistical error
- $\bullet~$ We expect $\sim 0.2 \times 10^{-4}$ systematic error
- Total error will be $\sim 0.31 \times 10^{-4}$ (current PDG average is 0.8×10^{-4})

Backup slides

Recoil mass of $\pi^+\pi^-$: data vs MC

• The pictures are in linear scale and zoomed to show the tails of MC signal distribution J/ψ in our selection

Scan for mixing angle

• the angle is fixed at a specific value, a fit was performed and the χ^2 of the fit is displayed

zero angle is preferred for both data periods

Combined fit of $M_{K^+K^-}^{inv}$ data

Pions: reconstruction track efficiency in 2012

Pions: $\epsilon_{DATA}/\epsilon_{MC}$ in 2012

Pions: $\epsilon_{DATA}/\epsilon_{MC}$ in 2012 after corrections

Check after efficiency corrections in 2012

Pions

Kaons: chebyshev polynomials