

Study of $(J / \Psi, \Psi(2 S)) \rightarrow \Lambda X$

Khadija Saeed, Haris Rashid, Abrar Ahmad Zafar, Talab Hussain Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan

Outline

- Overview

Motivations

- Experiment Overview
- Data Analysis
- Results
- Conclusion

Motivations

- The isospin conserving modes containing baryon pair with meson has been reported in PDG, also some searches have been performed to explore isospin violation process.
- In this study we searched the violation process in two ways isospin and strangeness which is highly suppress but kinematic ally it is possible.
- To find any hint beyond the Standard Model of Particle Physics.
- This work is devoted to the analysis of $J / \psi, \psi(2 S) \rightarrow \Lambda \bar{\Delta}, \Lambda \bar{\Sigma}, \Lambda \bar{\Xi}$ nd try to measure its branching fraction using the large statistics at BESIII

What is " X "

- Here X can be any anti baryon e.g. $\bar{\Delta}, \bar{\Sigma}, \bar{\Xi}$. Here we will discuss these channels

$$
\begin{array}{ll}
J / \psi \rightarrow \Lambda \bar{\Delta} & \psi(2 S) \rightarrow \Lambda \bar{\Delta} \\
J / \psi \rightarrow \Lambda \bar{\Sigma} & \psi(2 S) \rightarrow \Lambda \bar{\Sigma} \\
J / \psi \rightarrow \Lambda \bar{\Xi} & \psi(2 S) \rightarrow \Lambda \bar{\Sigma}
\end{array}
$$

Observation of $J / \psi \rightarrow \Lambda X$

This study is based upon two steps

- Monte Carlo (MC) simulations.
- Real data results
- Where real data contain $1.3 \times 10^{9} \mathrm{~J} / \psi$ events and
- $4.4 \times 10^{8} \quad \psi(2 S)$ events

MC simulation

A MC sample of 100000 events is generated using different generators for each channel.

Event Selection for ${ }_{\nu \mu \sim \Lambda \Sigma}$

There are 4 charge tracks in $J / \psi \rightarrow \Lambda \bar{\Sigma}$ as $\Lambda \rightarrow P \pi^{-}$and $\bar{\Sigma} \rightarrow \bar{p} \pi^{+} \gamma$

Only those events are selected having

- $\mathrm{nGood}==4$
- number of $\gamma==1$
- nCharge == o

PID is applied to select events having 1 proton 1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of $\Lambda \rightarrow P \pi^{-}$using kinematic fit for

$$
J / \psi \rightarrow \Lambda \bar{\Sigma}
$$

MC and Data invariant mass of $\bar{\Sigma} \rightarrow \bar{p} \pi^{+} \gamma$ using kinematic fit for

Background Analysis for $J / \psi \rightarrow \Lambda \bar{\Sigma}$

For final event selection we applied the following constraints to mass resolution of $\bar{\Sigma} \rightarrow$ $p \pi^{+} \gamma$.

- $x^{2}<40$
- $\left|M_{p \pi^{-}}-M_{\Lambda}\right|<0.005$
- $\left|M_{p \pi^{-} \gamma \gamma}-M_{\Xi}\right|>0.03532$
- $\left|M_{p \pi}-\gamma-M_{\Sigma}\right|>0.03117$
- $\left|M_{p \pi^{-}}-M_{\Delta}\right|>0.24$
- number of $\gamma=1$
- Decay Length of $\Lambda>2$
- Rxy <4

MC and Data invariant mass of $\bar{\Sigma} \rightarrow \bar{p} \pi^{+} \gamma \quad$ after applying cuts

Observed background channels for $J / \psi \rightarrow \Lambda \bar{\Sigma}$ using $10^{5} \mathrm{MC}$ events

Background channel	Number of events	Normalized events	Branching fraction
$P \bar{P} \pi^{+} \pi^{-}$	0	0	$(6.0 \pm 0.5) \times 10^{-3}$
$P \bar{P} \omega$	0	0	$(9.8 \pm 1.0) \times 10^{-4}$
$\Delta^{++} \bar{P} \pi^{-}$	0	0	$(1.6 \pm 0.5) \times 10^{-3}$
$\Delta^{++} \bar{\Delta}^{--}$	1	0	$(1.10 \pm 0.29) \times 10^{-3}$
$\Lambda \bar{\Lambda}$	4	2	$(1.61 \pm 0.15) \times 10^{-3}$
$P \bar{P} \rho$	1	0	$<3.1 \times 10^{-4} \mathrm{CL}=90$
$\Sigma^{0} \bar{\Sigma}^{0}$	23	9	116.4×10^{-3}

(a) Invariant mass distribution of $M_{P \bar{P} \pi^{+} \pi^{-}}$for $J / \psi \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{P \bar{P} \pi^{+} \pi^{-}}$for $J / \psi \rightarrow \Lambda \Sigma$ with mass window cut $\left|M_{\bar{p} \pi+\gamma}-M_{\bar{\Sigma}}\right|<0.0277$.

(a) Invariant mass distribution of $M_{P \bar{P}_{\omega}}$ for $J / \psi \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{P \bar{P}_{o}}$ for $J / \psi \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\overline{p \pi}+\gamma}-M_{\bar{\Sigma}}\right|<0.0277$

(a) Invariant mass of $M_{\Delta^{++} \bar{P}_{\pi^{-}}}$for $J / \psi \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass of $M_{\Delta++\bar{p} \pi^{-}}$for $J / \psi \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{p \pi^{+} \gamma}-M_{\bar{\Sigma}}\right|<0.0277$.

(a) Invariant mass of $M_{\Delta^{++}}$- for $J / \psi \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass of $M_{\Lambda^{++}}-$for $J / \psi \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{p \pi^{+} \gamma}-M_{\bar{\Sigma}}\right|<0.0277$.

(a) Invariant mass distribution of $M_{\bar{M}}$ for $J / \psi \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{\bar{\Lambda}}$ for $J / \psi \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\bar{p} \pi+\gamma}-M_{\bar{\Sigma}}\right|<0.0277$.

(a) Invariant mass distribution of $M_{P \bar{P} \rho}$ for $J / \psi \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{P \bar{P} \rho}$ for $J / \Psi \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\bar{p} \pi^{+} \gamma}-M_{\bar{\Sigma}}\right|<0.0277$.

(a) Invariant mass distribution of $M_{\Sigma^{0} \bar{\Sigma}^{2}}$ for $J / \psi \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{\bar{\gamma}^{-0}}$ for $J / \psi \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{p \pi+\gamma}-M_{\bar{\Sigma}}\right|<0.0277$.

Fit result of $M\left(\bar{\Sigma} \rightarrow \bar{P} \pi^{+} \gamma\right)$

Calculated Branching Fraction for $J / \psi \rightarrow \Lambda \bar{\Sigma}$

Formula for the calculation of Branching fraction is given bellow

$$
B(J / \psi, \psi(2 S) \rightarrow B \bar{B})=\frac{N_{o b s}}{N_{J / \psi, \psi(2 S)} \times \varepsilon \times B_{i}}
$$

Here $\quad N_{o b s}, \varepsilon$ and B_{i} apresents number of observed signal events, detection efticiency and intermediate branching fraction. The calculated branching fraction is

$$
B(J / \psi \rightarrow \Lambda \bar{\Sigma})=(1.8 \pm 0.19) \times 10^{-6}
$$

Initial Event Selection for $J / \psi \rightarrow \Lambda \bar{\Delta}$

There are 4 charge tracks in $J / \psi \rightarrow \Lambda \bar{\Delta}$ as $\Lambda \rightarrow P \pi^{-}$and
$\bar{\Delta} \rightarrow \bar{p} \pi^{+}$
Only those events are selected having
-nGood == 4
-nCharge == o

PID is applied to select events having 1 proton
1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of $\Lambda \rightarrow P \pi^{-}$using kinematic fit

MC and Data invariant mass of $\bar{\Delta} \rightarrow \bar{p} \pi^{+}$using Kinematic fit

Final Event Selection for $\overline{\Delta \rightarrow \bar{p} \pi^{\dagger}}$

Constraints applied on $J / \psi \rightarrow \Lambda \bar{\Delta}$ are

- $\chi^{2}<40$
- $\left|M_{p \pi^{-}}-M_{\Lambda}\right|<0.005$
- $\left|M_{p \pi^{-} \gamma \gamma}-M_{\Xi}\right|>0.03532$
- $\left|M_{p \pi^{-} \gamma}-M_{\Sigma}\right|>0.03117$
- number of $\gamma=0$
- Decay Length of $A>2$
- $\operatorname{Rxy}<4$

MC and Data invariant mass of $\bar{\Delta} \rightarrow \bar{p} \pi^{+}$after applying cuts

Sideband Analysis for $\bar{\Delta} \rightarrow \bar{p} \pi^{+}$

Upper Limit using Poisson Distribution

An important case: $\mathrm{n}_{\text {obs }}=0$

$$
\beta=\sum_{n=0}^{0} \frac{b^{n} e^{-b}}{n!}=e^{-b} \quad \rightarrow \quad b=-\log \beta
$$

Calculate an upper limit at confidence level $(1-\beta)=95 \%$

$$
b=-\log (0.05)=2.996 \approx 3
$$

Useful table:

	lower limit a			upper limit b		
	$\alpha=0.1$	$\alpha=0.05$	$\alpha=0.01$	$\beta=0.1$	$\beta=0.05$	$\beta=0.01$
0	-	-	-	2.30	3.00	4.61
1	0.105	0.051	0.010	3.89	4.74	6.64
2	0.532	0.355	0.149	5.32	6.30	8.41
3	1.10	0.818	0.436	6.68	7.75	10.04
4	1.74	1.37	0.823	7.99	9.15	11.60
5	2.43	1.97	1.28	9.27	10.51	13.11

Calculated Upper Limit at 95\% Confidence Level for $\bar{\Delta} \rightarrow \bar{p} \pi^{+}$

Formula for the calculation of upper limit is given bellow

$$
B(J / \psi, \psi(2 S) \rightarrow B \bar{B})<\frac{N_{o b s}}{N_{J / \psi, \psi(2 S)} \times \varepsilon \times B_{i}\left(1-\sigma_{s y s}\right)}
$$

Here $\quad N_{o b s}, \varepsilon$ and B_{i} 2presents number of observed signal events, detection etticiency and intermediate branching fraction. The calculated branching fraction is

$$
B(J / \Psi \rightarrow \Lambda \bar{\Delta})<1.1 \times 10^{-8}
$$

Initial Event Selection for $J / \psi \rightarrow \Lambda \bar{\Xi}$

There are 4 charge tracks in $J / \psi \rightarrow \Lambda \overline{\bar{\Xi}}$ as $\Lambda \rightarrow P \pi^{-}$and $\bar{\Xi} \rightarrow \bar{p} \pi^{+} \gamma \gamma$

Only those events are selected having

- $\mathrm{nGood}==4$
- number of $\gamma==2$
- nCharge == o

PID is applied to select events having 1 proton
1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of $\Lambda \rightarrow p \pi^{-}$using kinematic fit for $J / \psi \rightarrow \Lambda \bar{\Xi}$

MC and Data invariant mass of $\overline{\bar{E}} \rightarrow \bar{p} \pi^{+} \gamma \gamma$ using kinematic fit for $J / \psi \rightarrow \Lambda \overline{\bar{\Sigma}}$

Background Analysis for $J / \psi \rightarrow \Lambda \bar{\Xi}$

Constraints applied on $J / \psi \rightarrow \Lambda \bar{\Xi}$ are

- $\chi^{2}<40$
- $\left|M_{p \pi^{-}}-M_{\Lambda}\right|<0.005$
- $\left|M_{p \pi} \pi_{\gamma}-M_{\Lambda}\right|>0.005$
- $\left|M_{p \pi^{-} \gamma}-M_{\Sigma}\right|>0.006$
- $\left|M_{p \pi^{-}}-M_{\Delta}\right|>0.008$
- number of $\gamma=2$
- Decay Length of $A>4$
- $\operatorname{Rxy}<4$

MC and Data invariant mass of $\overline{\bar{\Xi}} \rightarrow \bar{p} \pi^{+} \gamma \gamma$ after applying cuts

Observed background channels for $J / \psi \rightarrow \Lambda \bar{\Xi}$ using 10^{5} MC events

Background Channal	Number of events	Normalized events	Branching fraction
$\Lambda \bar{\Lambda}$	0	0	$(1.61 \pm 0.15) \times 10^{-3}$
$\Xi^{-} \bar{\Xi}$	+	0	$(8.6 \pm 1.1) \times 10^{-4}$
$\Lambda \bar{\Lambda} \eta$	0	0	$(1.62 \pm 0.17) \times 10^{-4}$
$\Lambda \bar{\Lambda} \pi^{0}$	1	170	$(3.8 \pm 0.4) \times 10^{-5}$
$P \bar{P} \eta$	1603	0	$(2.00 \pm 0.12) \times 10^{-3}$
$P \bar{P} \bar{\eta}$	1	0	$(2.1 \pm 0.4) \times 10^{-4}$
$P \bar{P} \omega$	0	0	$(9.8 \pm 1.0) \times 10^{-4}$
$P \bar{P} \phi$	0	0	$(4.5 \pm 1.5) \times 10^{-5}$
$P \bar{P} \pi^{+} \pi^{-}$	1	0	$(6.0 \pm 0.5) \times 10^{-3}$
$P \bar{P} \pi^{+} \pi^{-} \pi^{0}$	0	0	$(2.3 \pm 0.9) \times 10^{-3}$
$P \bar{P} \rho$	10	0	$<3.1 \times 10^{-4} \mathrm{CL} 90$
$\Sigma^{0} \bar{\Sigma}^{0}$	0	1213	$(1.29 \pm 0.09) \times 10^{-3}$
$\Sigma^{+} \bar{\Sigma}^{-}$	3252	0	$(1.50 \pm 0.24) \times 10^{-3}$

(a) Invariant mass distribution of $M_{\bar{\Lambda}}$ for $J / \Psi \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{\bar{\Lambda}}$ with mass window cut $\left|M_{\bar{\beta} \pi^{+}}-M_{\overline{\bar{Z}}}\right|<0.0467$ for $\bar{J} / \psi \rightarrow \Lambda \Xi$
(a)

hmc	
Entries	0
Mean	0
RMS	0

(a) Invariant mass distribution of $M_{\Xi^{-}-\bar{\Xi}^{+}}$for $J / \Psi \rightarrow \Lambda \overline{\bar{\Xi}}$. (b) Invariant mass distribution of $M_{\Xi-\bar{\Xi}}$ with mass window cut $\mid M_{p \pi+}$ 利 $-M_{\overline{\bar{\Xi}}} \mid<0.0467$ for $J / \psi \rightarrow \Lambda \bar{\Xi}$

(a) Invariant mass distribution of $M_{\bar{M} \bar{\eta}}$ for $J / \psi \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{\Lambda \bar{M} \eta}$ with mass window cut $\left|M_{\bar{\beta} \pi+\gamma}-M_{\overline{\bar{\varepsilon}}}\right|<0.0467$ for $J / \psi \rightarrow \Lambda \overline{\bar{\varepsilon}}$

(a) Invariant mass distribution of $M_{\Lambda \bar{A} \pi^{0}}$ for $J / \psi \rightarrow \Lambda \overline{\bar{E}}$. (b) Invariant mass distribution of $M_{\bar{M} \pi^{0}}$ with mass window cut $\left|M_{p \pi}+\gamma-M_{\overline{\bar{\Sigma}}}\right|<0.0467$ for $\bar{J} / \psi \rightarrow \Lambda \Xi$

(b)

(a) Invariant mass distribution of $M_{P \bar{P} \eta_{\eta}}$ for $J / \psi \rightarrow \Lambda \overline{\bar{\Xi}}$. (b) Invariant mass distribution of $M_{P \overline{P_{\eta}}}$ with mass window cut $\left|M_{\overline{p \pi}+} \psi_{\gamma}-M_{\overline{\bar{E}}}\right|<0.0467$ for $\bar{J} / \psi \rightarrow \Lambda \Xi$

(a) Invariant mass distribution of $M_{P \bar{P} \eta}$ for $J / \psi \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{P \bar{P} \eta}$ with mass window cut $\left|M_{\bar{p} \pi^{+}} \neq M_{\overline{\bar{I}}}\right|<0.0467$ for $J / \psi \rightarrow \Lambda \bar{\Xi}$

(a) Invariant mass distribution of $M_{P \bar{P}_{O}}$ for $J / \psi \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{P \bar{P}_{O}}$ with mass window cut $\left|M_{p_{\pi}+\gamma}-M_{\bar{\Xi}}\right|<0.0467$ for $\bar{J} / \psi \rightarrow \Lambda \Xi$

Invariant mass distribution of $M_{P \overline{P_{\phi}}}$ for $J / \psi \rightarrow \Lambda \overline{\bar{\Xi}}$. (b) Invariant mass distribution of $M_{P \bar{P} \phi}$ with mass window cut $\left|M_{\overline{p \pi}}+{ }_{W}-M_{\overline{\bar{E}}}\right|<0.0467$ for $J / \psi \rightarrow \Lambda \overline{\bar{E}}$

(a) Invariant mass distribution of $M_{P \bar{P}_{\pi}+\pi^{-}}$for $J / \psi \rightarrow \Lambda \overline{\bar{\Xi}}$. (b) Invariant mass
distribution of $M_{P \bar{P} \bar{\pi}^{+} \pi^{-}}$with mass window cut $\left|M_{\bar{p} \pi^{+}+\gamma}-M_{\overline{\bar{\sigma}}}\right|<0.0467$ for $\bar{J} / \psi \rightarrow \Lambda \Xi$

(a) Invariant mass distribution of $M_{P \bar{P}_{\pi}+\pi^{-}-\pi^{0}}$ for $J / \psi \rightarrow \Lambda \overline{\bar{\Xi}}$. (b) Invariant mass distribution of $M_{P \bar{P}_{\pi}+\pi^{-} \pi^{0}}$ with mass window cut $\left|M_{\bar{p} \pi}+W^{-}-M_{\bar{\Xi}}\right|<0.0467$ for $\bar{J} / \Psi \rightarrow \Lambda \Xi$

(a) Invariant mass distribution of $M_{P \bar{P} \rho}$ for $J / \psi \rightarrow \Lambda \overline{\bar{E}}$. (b) Invariant mass distribution of $M_{p \overline{P_{P}}}$ with mass window cut $\left|M_{\overline{p \pi}+\gamma \gamma}-M_{\overline{\bar{\Sigma}}}\right|<0.0467$ for $J / \psi \rightarrow \Lambda \bar{\Xi}$

(a) Invariant mass distribution of $M_{\mathrm{E}^{-}(\overline{\mathrm{L}}}$ for $J / \psi \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{\Sigma^{0} \tilde{E}_{2}^{2}}$ with mass window cut $\left|M_{p \pi}+w-M_{\bar{\Xi}}\right|<0.0467$ for $\bar{J} / \psi \rightarrow \Lambda \Xi$

(a) Invariant mass distribution of $M_{\Sigma^{+} \bar{\Sigma}}$ for $J / \psi \rightarrow \Lambda \overline{\bar{\Xi}}$. (b) Invariant mass distribution of $M_{\Sigma^{+} \bar{\Sigma}}$ with mass window cut $\left|M_{p \pi}+w-M_{\overline{\bar{\Sigma}}}\right|<0.0467$ for $J / \psi \rightarrow \Lambda \overline{\bar{\Sigma}}$

Sideband Analysis for $J / \psi \rightarrow \Lambda \bar{\Xi}$

Calculated Upper Limit at 95\% Confidence Level for $J / \psi \rightarrow \Lambda \bar{\Xi}$

Formula for the calculation of upper limit is given bellow

$$
B(J / \psi, \psi(2 S) \rightarrow B \bar{B})<\frac{N_{o b s}}{N_{J / \psi, \psi(2 S)} \times \varepsilon \times B_{i}\left(1-\sigma_{s y s}\right)}
$$

Here $\quad N_{o b s}, \varepsilon$ and B_{i} 2presents number of observed signal events, detection efticiency and intermediate branching fraction. The calculated branching fraction is

$$
B(J / \psi \rightarrow \Lambda \bar{\Xi})<8.9 \times 10^{-8}
$$

The systematic errors for $J / \psi \rightarrow \Lambda \bar{\Delta}, \Lambda \bar{\Sigma}, \Lambda \overline{\bar{\Sigma}}$

Sources	\% error for $\Lambda \bar{\Delta}$	\% error for $\Lambda \bar{\Sigma}$	\% error for $\Lambda \bar{\Xi}$
MDC Tracking	8	8	8
PID (Ablikimet al., 2017)	4	5	6
MC Model (Ablikimet al., 2017)	-	0.83	5.9
Statistical Error	0.16	1.78	0.27
$B\left(\Lambda \rightarrow P \pi^{-}\right)$(Patrignani et al., 2016)	0.5	0.5	0.5
J / Ψ number (Ablikim et al., 2017)	7.0	7.0	7.0
Kinematic fit for $\Lambda \bar{\Lambda}$	15	15	15
$\Lambda \rightarrow P \pi^{-}$	0.5	0.5	0.5
$\overline{\Sigma^{0}} \rightarrow \bar{p} \pi^{+} \gamma$	-	0	-
$\bar{\Xi} \rightarrow \bar{\Lambda} \pi^{0}$	-	-	0.012
Total error	18.83	19.166	20.23

Initial Event Selection for $\psi(2 S) \rightarrow \Lambda \bar{\Delta}$

There are 4 charge tracks in $\psi(2 S) \rightarrow \Lambda \bar{\Delta}$ as $\Lambda \rightarrow P \pi^{-}$and
$\bar{\Delta} \rightarrow \bar{p} \pi^{+}$
Only those events are selected having
-nGood == 4
-nCharge == o

PID is applied to select events having 1 proton
1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of $\Lambda \rightarrow P \pi^{-}$using kinematic fit for

 $\psi(2 S) \rightarrow \Lambda \bar{\Delta}$

MC and Data invariant mass of $\bar{\Delta} \rightarrow \bar{p} \pi^{+}$using kinematic fit $\psi(2 S) \rightarrow \Lambda \bar{\Delta}$

Background Analysis for $\psi(2 S) \rightarrow \Lambda \bar{\Delta}$

Constraints applied on $\psi(2 S) \rightarrow \Lambda \bar{\Delta}$ are

- $\chi^{2}<40$
- $\left|M_{p \pi^{-}}-M_{\Lambda}\right|<0.005$
- $\left|M_{p \pi^{-} \gamma \gamma}-M_{\Xi}\right|>0.03532$
- $\left|M_{p \pi^{-} \gamma}-M_{\Sigma}\right|>0.03117$
- number of $\gamma=0$
- Decay Length of $\Lambda>2$
- $\operatorname{Rxy}<4$

MC and Data invariant mass of $\bar{\Delta} \rightarrow \bar{p} \pi^{+}$after applying cuts

Sideband Analysis for $\psi(2 S) \rightarrow \Lambda \bar{\Delta}$

Calculated Upper Limit at 95\% Confidence Level for $\psi(2 S) \rightarrow \Lambda \bar{\Delta}$

Formula for the calculation of upper limit is given bellow

$$
B(J / \Psi, \psi(2 S) \rightarrow B \bar{B})<\frac{N_{o b s}}{N_{J / \psi, \psi(2 S)} \times \varepsilon \times B_{i}\left(1-\sigma_{s y s}\right)}
$$

Here $\quad N_{o b s}, \varepsilon$ and B_{i} apresents number of observed signal events, detection efticiency and intermediate branching fraction. The calculated branching fraction is

$$
B(\psi(2 S) \rightarrow \Lambda \bar{\Delta})<0.21 \times 10^{-7}
$$

Event Selection for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$

There are 4 charge tracks in $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ as $\Lambda \rightarrow P \pi^{-}$and $\bar{\Sigma} \rightarrow \bar{p} \pi^{+} \gamma$

Only those events are selected having

- $\mathrm{nGood}==4$
- number of $\gamma==1$
- nCh arge $==0$

PID is applied to select events having 1 proton 1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of $\Lambda \rightarrow p \pi^{-}$using kinematic fit for

$$
\psi(2 S) \rightarrow \Lambda \bar{\Sigma}
$$

MC and Data invariant mass of $\bar{\Sigma} \rightarrow \bar{p} \pi^{+} \gamma$ using kinematic fit for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$

Background Analysis for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$

Some cuts are applied to remove the background on both Monte carlo and data signals.
Cut applied on MC is

- including cut of Λ

Cut applied on real data signals are

- $\chi^{2}<40$
- $\left|M_{\Lambda}-1.1156\right|<0.005$
- $\left|M_{\Xi}-1.31486\right|>0.03532$
- $\left|M_{\Sigma}-1.11583\right|>0.03117$
- $\left|M_{\Delta}-1.232\right|>0.24$
- no. of gamma $==1$
- decay length ratio $\Lambda>2$
- $\operatorname{Rxy}<4$

MC and Data invariant mass o $\bar{\Sigma} \rightarrow \bar{p} \pi^{+} \gamma$ after applying cuts for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$

Observed background channels for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ after applying cuts

background channel	number of events	Normalized events	Branching fraction
$\overline{\Xi^{-}} \overline{\Xi^{+}}$	0	0	$(2.64 \pm 0.18) \times 10^{-4}$
$P \bar{P} \eta$	2	0	$(6.0 \pm 0.4) \times 10^{-5}$
$\Lambda \bar{\Lambda} \pi^{0}$	3	0	$<2.9 \times 10^{-6}$
$P \bar{P} \bar{\eta}$	0	0	-
$P \bar{P} \omega$	2	0	$(6.9 \pm 2.1) \times 10^{-5}$
$P \bar{P} \pi^{+} \pi^{-}$	0	0	$(6.0 \pm 0.4) \times 10^{-4}$
$P \bar{P} \pi^{+} \pi^{-} \pi^{0}$	0	0	$(7.3 \pm 0.7) \times 10^{-4}$
$P \bar{P} \rho$	2	0	$(5.0 \pm 2.2) \times 10^{-5}$
$\Lambda \bar{\Lambda} \eta$	2	0	$(2.5 \pm 0.4) \times 10^{-5}$
$\Lambda \bar{\Lambda}$	5	0	$(3.57 \pm 0.18) \times 10^{-4}$
$\Sigma^{0} \overline{\Sigma^{0}}$	5	0	$(2.32 \pm 0.16) \times 10^{-4}$

(a) Invariant mass distribution of $M_{\bar{z}^{-} \bar{\Xi}^{+}}$for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of background $M_{\Xi^{-}-\bar{\Xi}^{+}}$for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{p \pi}+\gamma-M_{\bar{\Sigma}}\right|<$ 0.0467

(a) Invariant mass distribution of $M_{P \bar{P}_{\eta}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{P \bar{P}_{\eta}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\bar{\pi} \pi}+\gamma-M_{\bar{\Sigma}}\right|<0.0467$

(a) Invariant mass distribution of $M_{\bar{\Lambda} \bar{\pi}^{0}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ (b) Invariant mass distribution of $M_{M \bar{\pi} 0}^{0}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\bar{p} \pi^{+} \gamma}-M_{\bar{\Sigma}}\right|<0.0467$

(b)

(a) Invariant mass distribution of $M_{P \bar{P} \eta}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ (b) Invariant mass distribution of $M_{P \bar{P} ;}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\bar{\pi} \pi}+\gamma-M_{\bar{\Sigma}}\right|<0.0467$

(a) Invariant mass distribution of $M_{P \bar{P}_{0}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{P \bar{P}(0)}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\overline{p \pi}+\gamma}-M_{\bar{\Sigma}}\right|<0.0467$

(a) Invariant mass distribution of $M_{P \bar{p}_{\pi}+\pi^{-}}$- for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{P \bar{p}_{\pi}+\pi} \pi^{-}$for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\bar{p} \pi}+\gamma-M_{\bar{\Sigma}}\right|<0.0467$

(a) Invariant mass distribution of $M_{P \bar{F}_{\pi}+\pi^{-}-\pi^{0}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{P \bar{p}_{\pi}+\pi^{-} \pi}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\bar{p} \pi}-M_{\overline{\mathrm{I}}}\right|<0.0467$

(a) Invariant mass distribution of $M_{P \overline{P_{P}}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{P \bar{P} \rho}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{p \pi}+\gamma-M_{\bar{\Sigma}}\right|<0.0467$.

(a) Invariant mass distribution of $M_{\bar{\Lambda} \eta}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass
distribution of $M_{\Lambda \bar{M} \eta}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\bar{\beta} \pi}+\gamma-M_{\bar{\Sigma}}\right|<0.0467$.

(a) Invariant mass distribution of $M_{\Lambda} \bar{\Lambda}^{\text {for }} \psi(2 S) \rightarrow \Lambda \bar{\Sigma}$. (b) Invariant mass distribution of $M_{\bar{M}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{p \pi}+\gamma-M_{\bar{\Sigma}}\right|<0.0467$.

(b)

(a) Invariant mass distribution of $M_{\Sigma 0 \Sigma^{0}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}^{\text {. }}$. (b) Invariant mass distribution of $M_{\Sigma^{0} 0^{0}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$ with mass window cut $\left|M_{\bar{p} \pi}+\gamma-M_{\bar{\Sigma}}\right|<0.0467$.

Sideband Analysis for

$$
\psi(2 S) \rightarrow \Lambda \bar{\Sigma}
$$

Calculated Upper Limit at 95\% Confidence Level for $\psi(2 S) \rightarrow \Lambda \bar{\Sigma}$

Formula for the calculation of upper limit is given bellow

$$
B(J / \psi \rightarrow B \bar{B}) \leq \frac{N_{\text {obs }}}{N_{J / \psi} \times \varepsilon \times B_{i}}
$$

Here $\quad N_{o b s}, \varepsilon$ and B_{i} apresents number of observed signal events, detection etticiency and intermediate branching fraction. The calculated branching fraction is

$$
B(\psi(2 S) \rightarrow \Lambda \bar{\Sigma})<0.66 \times 10^{-7}
$$

Event Selection for ${ }_{\psi(2 S) \rightarrow \Lambda \overline{\bar{z}}}$

There are 4 charge tracks in $\psi(2 S) \rightarrow \Lambda \overline{\bar{\Sigma}}$ as $\Lambda \rightarrow P \pi^{-}$and $\bar{\Xi} \rightarrow \bar{p} \pi^{+} \gamma \gamma$

Only those events are selected having

- $\mathrm{nGood}==4$
- number of $\gamma==2$
- nCharge $==0$

PID is applied to select events having 1 proton
1 anti proton 1 pion and 1 anti pion

MC and Data invariant mass of

$$
\Lambda \rightarrow p \pi^{-}
$$

$$
\psi(2 S) \rightarrow \Lambda \overline{\bar{\Xi}}
$$

MC and Data invariant mass of

using kinematic fit

for

$\bar{\Xi} \rightarrow \bar{p} \pi^{+} \gamma \gamma$

$\psi(2 S) \rightarrow \Lambda \bar{\Xi}$

Background Analysis for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$

Some cuts are applied to remove the background on both Monte carlo and data signals.
Cut applied on MC is

- including cut of Λ

Cut applied on real data signals are

- $\chi^{2}<40$
- $\left|M_{\Lambda}-1.1156\right|<0.005$
- $\left|M_{\Xi}-1.1156\right|>0.005$
- $\left|M_{\Sigma}-1.19142\right|>0.006$
- $\left|M_{\Delta}-1.232\right|>0.008$
- no. of gamma $==2$
- decay length ratio $\Lambda>2$
- Rxy <4

MC and Data invariant mass of $\bar{\Xi} \rightarrow \bar{p} \pi^{+} \gamma \gamma$ after applying cuts for $\psi(2 S) \rightarrow \Lambda \overline{\bar{\Xi}}$

Observed background channels for $\psi(2 S) \rightarrow \Lambda \overline{\bar{\Sigma}}$ using $10^{5} \mathrm{MC}$ events

background channel	number of events	Normalized events	Branching fraction
$\Xi^{-} \bar{\Xi}^{+}$	2	0	$(2.64 \pm 0.18) \times 10^{-4}$
$P \bar{P} \eta$	2	0	$(6.0 \pm 0.4) \times 10^{-5}$
$\Lambda \bar{\Lambda} \pi^{0}$	1	0	$<2.9 \times 10^{-6}$
$P \bar{P} \eta$	2	0	-
$P \bar{P} \omega$	0	0	$(6.9 \pm 2.1) \times 10^{-5}$
$P \bar{P} \pi^{+} \pi^{-}$	0	0	$(6.0 \pm 0.4) \times 10^{-4}$
$P \bar{P} \pi^{+} \pi^{-} \pi^{0}$	1	0	$(7.3 \pm 0.7) \times 10^{-4}$
$P \bar{P} \rho$	2	0	$(5.0 \pm 2.2) \times 10^{-5}$
$\Lambda \bar{\Lambda} \eta$	1	0	$(2.5 \pm 0.4) \times 10^{-5}$
$\Lambda \bar{\Lambda}$	0	0	$(3.57 \pm 0.18) \times 10^{-4}$
$\Sigma^{0} \overline{\Sigma^{0}}$	0	0	$(2.32 \pm 0.16) \times 10^{-4}$

(a) Invariant mass distribution of $M_{\Xi^{-}-\bar{\Xi}^{+}}$for $J / \psi \rightarrow \Lambda \overline{\bar{\Xi}}$. (b) Invariant mass distribution of $M_{\bar{\Xi}-\bar{\Xi}}$ with mass window cut $\left|M_{p \pi}+\gamma^{-}-M_{\overline{\bar{z}}}\right|<0.0467$ for $J / \psi \rightarrow \Lambda \bar{\Xi}$

(a) Invariant mass distribution of $M_{p \bar{P} \bar{\eta}_{\eta}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{P \bar{P} \eta}$ with mass window cut $\left|M_{\bar{p}+}+\gamma-M_{\overline{\bar{Z}}}\right|<0.0467$ for $\psi(2 S) \rightarrow \Lambda \Xi$

(a) Invariant mass distribution of $M_{\bar{M} \bar{\pi}^{0}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{\overline{M \pi} \pi^{0}}$ with mass window cut $\left|M_{\nabla \pi}+\gamma \gamma^{-}-M_{\bar{\sigma}}\right|<0.0467$ for $\psi(2 S) \rightarrow \Lambda E$

(a) Invariant mass distribution of $M_{P \bar{P} ;}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{P \bar{P} ;}$ with mass window cut $\left|M_{\overline{p \pi}+\gamma}-M_{\overline{\bar{I}}}\right|<0.0467$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$

(a) Invariant mass distribution of $M_{P \bar{P}_{0}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{P P_{0,0}}$ with mass window cut $\left|M_{\bar{p} \pi}+\gamma-M_{\bar{\sigma}}\right|<0.0467$ for $\psi \overline{\psi(2 S)} \rightarrow \Lambda \Xi$

(a) Invariant mass distribution of $M_{P \bar{P}_{\pi}+\pi^{-}}$- for $\psi(2 S) \rightarrow \Lambda \overline{\bar{E}}$. (b) Invariant mass distribution of $M_{P \bar{P}_{\pi}+\pi} \pi^{-}$with mass window cut $\left|M_{p \pi}+w-M_{\bar{\Sigma}}\right|<0.0467$ for $\psi(2 S) \rightarrow \Lambda \overline{\bar{\Sigma}}$

> (a) Invariant mass distribution of $M_{P \bar{P}_{\pi} \pi^{-} \pi^{-} \pi^{0}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{P \bar{P}_{\pi} \pi^{-} \pi^{-} \pi^{0}}$ with mass window cut $\left|M_{\bar{p} \pi^{2}}-M_{\overline{\bar{Z}}}\right|<0.0467$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$

(a) Invariant mass distribution of $M_{P \bar{p}_{\rho}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{p \bar{P} \rho}$ with mass window cut $\left|M_{p \pi}+\gamma \gamma-M_{\overline{\bar{G}}}\right|<0.0467$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$

(a) Invariant mass distribution of $M_{\bar{M} \eta}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass distribution of $M_{\bar{M} \eta}$ with mass window cut $\left|M_{\bar{p} \pi}+\gamma-M_{\overline{\bar{Z}}}\right|<0.0467$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$
(a)

hmc	
Entries	1
Mean	0
RMS	0

(a) Invariant mass distribution of $M_{\bar{\Lambda}}$ for $\psi(2 S) \rightarrow \Lambda \overline{\bar{Z}}$. (b) Invariant mass distribution of $M_{\bar{M}}$ with mass window cut $\left|M_{p \pi}+\psi_{\gamma}-M_{\bar{\Xi}}\right|<0.0467$ for $\psi(2 S) \rightarrow \Lambda \overline{\bar{\Xi}}$

(a) Invariant mass distribution of $M_{\Sigma^{0} \bar{\Sigma}^{0}}$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$. (b) Invariant mass
distribution of $M_{\Sigma^{0} \bar{\Sigma}^{0}}$ with mass window cut $\left|M_{p \pi}+\gamma \gamma M_{\overline{\bar{E}}}\right|<0.0467$ for $\psi(2 S) \rightarrow \Lambda \bar{\Xi}$

Sideband Analysis for $\psi(2 S) \rightarrow \Lambda \overline{\bar{\Xi}}$

Calculated Upper Limit at 95\% Confidence Level for $\psi(2 S) \rightarrow \Lambda \overline{\bar{\Xi}}$

Formula for the calculation of upper limit is given bellow

$$
B(J / \psi \rightarrow B \bar{B}) \leq \frac{N_{o b s}}{N_{J / \psi} \times \varepsilon \times B_{i}}
$$

Here $\quad N_{o b s}, \varepsilon$ and B_{i} apresents number of observed signal events, detection efticiency and intermediate branching fraction. The calculated branching fraction is

$$
B(\psi(2 S) \rightarrow \Lambda \bar{\Xi})<0.12 \times 10^{-6}
$$

The systematic errors for $\psi(2 S) \rightarrow \Lambda \bar{\Delta}, \Lambda \bar{\Sigma}, \Lambda \overline{\bar{\Xi}}$

Sources	\% error for $\Lambda \bar{\Delta}$	\% error for $\Lambda \bar{\Sigma}$	\% error for $\Lambda \overline{\bar{z}}$
MDC Tracking (Ablikim et al., 2017)	8	8	8
PID (Ablikim et al., 2017)	4	5	6
$\psi(2 S)$ number (Ablikim et al., 2017)	2.9	2.9	2.9
$\Lambda \rightarrow P \pi^{-}$(Patrignani et al., 2016)	0.5	0.5	0.5
$\overline{\Sigma^{0}} \rightarrow \bar{p} \pi^{+} \gamma$ (Patrignani et al., 2016)	-	0	-
$\overline{\bar{\Sigma}} \rightarrow \bar{\Lambda} \pi^{0}$ (Patrignani et al., 2016)	-	-	0.012
Total error	9.41	9.88	10.42

Results

- Calculated Branching fraction and upper limits are
$B(J / \psi \rightarrow \Lambda \bar{\Sigma})=(1.8 \pm 0.19) \times 10^{-6} \quad B(\psi(2 S) \rightarrow \Lambda \bar{\Sigma})<(6.6 \pm 0.098) \times 10^{-8}$
$B(J / \psi \rightarrow \Lambda \bar{\Delta})<(8.0 \pm 0.18) \times 10^{-9} \quad B(\psi(2 S) \rightarrow \Lambda \bar{\Delta})<(2.1 \pm 0.094) \times 10^{-8}$
$B(J / \psi \rightarrow \Lambda \overline{\bar{\Xi}})<(7.14 \pm 0.2) \times 10^{-8} \quad B(\psi(2 S) \rightarrow \Lambda \overline{\bar{\Xi}})<(1.2 \pm 0.01) \times 10^{-7}$

