Study of $e^+e^- ightarrow par{p}K^+K^-$ above 4 GeV at BESIII

Longke LI, Changzheng YUAN

Institute of High Energy Physics, CAS (IHEP)

May 7, 2019, Charmonium Group Meeting

◆□ → ◆□ → ◆三 → ◆三 → ◆□ → ◆□ →

Motivation and Dataset	Measurement of $\sigma(ee \rightarrow ppKK)$	Study of intermediate processes	Summary
Outline			

Motivation and Dataset

- 2 Study of $e^+e^- \rightarrow p\bar{p}K^+K^-$
 - Event selection and kinematic fit
 - Background study and signal yields
 - Efficiency determination
- 3 Study of intermediate processes4 Summary

May 7, 2019

Motivation and Dataset	Measurement of $\sigma(ee \rightarrow ppKK)$	Study of intermediate processes	Summary
00			
Motivation			

- Search for ψ or Y states via measuring cross section of $e^+e^- \rightarrow p\bar{p}K^+K^-$ decay above 4 GeV for the first time at BESIII. i.e.
 - $\psi(4160)$: seen only in channels of $\ell^+\ell^-$ and $D_{(s)}^{(*)}D_{(s)}^{(*)}(\pi)$ ref. PDG. Not reported in non-charm meson processes except $e^+e^- \rightarrow \eta J/\psi$ via ISR process^a.
 - Y(4260)/Y(4360): properties are different from a conventional $q\bar{q}$ state.
- Measure cross sections of intermediate processes above 4 GeV, i.e.
 - $e^+e^- \rightarrow p\bar{p}\phi$, observed (> 5 σ) with J/ψ sample^b and $\psi(3686)$ sample^c. But it has NOT jet been reported above 4 GeV at BESIII
 - $e^+e^- \rightarrow pK^-\bar{\Lambda}(1520)$, measured with evidence $(>3\sigma)$ in $e^+e^- \rightarrow pK_c^0\bar{n}K^-$ above 4 GeV at BESIII.^d
 - $e^+e^- \rightarrow \Lambda(1520)\bar{\Lambda}(1520)$: only under 3σ C.L. in above reference. Considering a larger \mathcal{BR} and higher efficiency for $\Lambda(1520) \rightarrow pK^-$ than that of $\bar{n}K_{c}^{0}$, a better measurement is prospective in our analysis.
- Investigate the intermediate states in any subsystems, i.e.
 - Search for $X(1835) \rightarrow p\bar{p}$, observed at $p\bar{p}$ threshold firstly in $J/\psi \rightarrow \gamma p\bar{p}$ decay;^e Further, PWA of J/ψ or $\psi(3686) \rightarrow \gamma p \bar{p}$ decays determines $J^{PC}(X(1835)) = 0^{-+} f$
 - Search for scalar particle $f_0(2100) \rightarrow p\bar{p}$ (needs confirmation in PDG).
 - Search for pentaquark [uudss] $P_s \rightarrow p\phi$, analogous to $P_c \rightarrow pJ/\psi$ process.

^aX.L. Wang et al. (Belle Collaboration), Phys. Rev. D 87, 051101 (2013) ^dM. Ablikim et al. (BESIII Collaboration). Phys. Rev. D 98, 032014 (2018) ^bM. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 93, 052010 (2016) ^eJ.Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 91, 022001 (2003) ^CM. Ablikim et al. (BESIII Collaboration), arXiv:1902.09756 [hep-ex] ^fM. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 108, 112003 (2012).

Motivation ○●	and Dataset Measurement of $\sigma(ee \rightarrow ppKK)$ Study of intermediate processes 000000 0		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		Measurement of $\sigma(ee \rightarrow ppKK)$ Study of intermediate processes 000000 0		Measurement of $\sigma(ee \rightarrow ppKK)$ Study of intermediate processes 000000 0		arrement of $v(ee \rightarrow ppKK)$ Study of intermediate processes OOO O		Measurement of $\sigma(ee \rightarrow ppKK)$ 000000			Study of intermediate processes		Summa O	ŋ
Datas	ets																
											, C						
۹	Real data:	all XYZ	datasets	above 4	4 GeV (2	2 energy	points)	+ 3770 s	sample. ^a								
	Sample	3770	4009	4090	4180	4190	4200	4210	4220	4230							
	\sqrt{s} (MeV)	3773	4007.62	4085.45	4178.37	4188.99	4199.03	4209.25	4218.84	4226.26							
	\mathcal{L} (pb ⁻¹)	1989.27	482.0	52.86	3160	570.03	526.0	572.05	569.2	1100.94							
	Sample	4237	4245	4246	4260	4270	4280	4310	4360	4390							
	\sqrt{s} (MeV)	4235.82	4241.66	4243.93	4257.97	4266.80	4277.74	4307.89	4358.26	4387.40							
	\mathcal{L} (pb ⁻¹)	530.3	55.88	538.1	828.4	531.1	175.7	45.08	543.9	55.57							
	Sample	4420	4470	4530	4575	4600											
	\sqrt{s} (MeV)	4415.58	4467.06	4527.14	4574.5	4599.53											
	\mathcal{L} (pb ⁻¹)	1090.7	111.09	112.12	48.93	586.9											

- Generic MC: 5 streams (hadronic processes samples only).
- Signal MC: 0.1 million events per mode produced with KKMC-00-00-60.^b

$$e^+e^-
ightarrow par{p}K^+K^-$$
 PHSP;

•
$$e^+e^-
ightarrow par{p}\phi$$
 PHSP, $\phi
ightarrow K^+K^-$ VSS;

•
$$e^+e^- \rightarrow pK^-\bar{\Lambda}(1520)$$
 PHSP, $\bar{\Lambda}(1520) \rightarrow \bar{p}K^+$ PHSP;

• $e^+e^- \rightarrow \Lambda(1520)\bar{\Lambda}(1520)$ PHSP, $\Lambda(1520) \rightarrow pK^-$ PHSP (+c.c);

^aY.F. Yang *et al.*, BESIII-DocDB-720; Charmonium WG wiki, https://docbes3. ihep.ac.cn/~charmoniumgroup/index.php/Datasets ^bR.G. Ping, BESIII-DocDB-206; Z.T. Sun and C.Z. Yuan, BESIII-DocDB-717

• □ > < 同 > < Ξ > <</p>

Motivation and Dataset	Measurement of $\sigma(ee \rightarrow ppKK)$	Study of intermediate processes	Summary
	•••••		
Event selection and kinematic fit			
Event selection			

- BOSS: version 7.0.3.
- Charged tracks:
 - good tracks with $|V_r| < 1$ cm, $|V_z| < 10$ cm, $|\cos \theta| < 0.93$,
 - $N_{\text{good}} = 4$, $\sum_{i=1}^{4} Q_i = 0$
 - apply nominal PID, i.e. for p: $prob(p) > prob(K, \pi)$ and prob(p) > 0.001.
 - require N(p) = 1, $N(\bar{p}) = 1$, $N(\pi^+) = 1$ and $N(\pi^-) = 1$.
- Kinematic fit:

 - ${\scriptstyle \bullet}\,$ obtain the run-dependent C.M energies using MeasuredEcmsSvc package.
 - perform momentum-conservation constraint 3C fit on $p\bar{p}K^+K^-$ with $\chi^2_{3C} < 100$, and update their kinematic info.
- Define a scaled energy variable X_T , which is expected to be one due to energy conservation.

$$X_T = \sum_h E_h / E_{cm} \tag{1}$$

where h is final state particle (FSP), and we require $0.98 < X_T < 1.02$.

◆□▶◆母▶◆ヨ▶ ▲ヨ▶ ヨヨ のへで

Motivation and Dataset	Measurement of $\sigma(ee \rightarrow ppKK)$	Study of intermediate processes	Summary
	00000		
Event selection and kinematic fit			
kinematic fit qualities and	X_{τ} @4180 sample		

- No tight requirements on these two fit qualities.
- A very clear sample is obtained in X_T distribution.
- More info for other energy points are shown in backup.

Motivation and Dataset	Measurement of $\sigma(ee \rightarrow ppKK)$	Study of intermediate processes	Summary
	00000		
Background study and signal yields			
Topology of inclusive MC			

• Negligible backgrounds ($\sim 0.3\%$) exist in 4180 inclusive MC.

secondary decays	nEvts	nCmltEvts
	9646	9646
$f_0^\prime o K^+ K^-$	1784	11430
$a_2^0 ightarrow {\cal K}^+ {\cal K}^-$	516	11946
$f_2(1ar{2}70) ightarrow K^+K^-$	444	12390
$J/\psi ightarrow par{ ho}$	1	12391
$ar{\Sigma}^- o \pi^0 ar{ ho}$	1	12392
$ar{\Sigma}^- o \pi^0 ar{ ho}$, $ar{K}^* o K^- \pi^+$	1	12393
$ar{\Sigma}^- ightarrow \pi^0 ar{ ho}, \ ar{K}_0^{*0} ightarrow K^- \pi^+$	1	12394
$\Sigma^+ o \pi^0$ p, $ec{K^*} o K^+ \pi^-$	1	12395
each channel has one event	34	12429
	$\begin{array}{c} \mbox{secondary decays} \\ f_0^{\ell} \rightarrow K^+ K^- \\ a_2^{0} \rightarrow K^+ K^- \\ f_2(1270) \rightarrow K^+ K^- \\ J/\psi \rightarrow p\bar{p} \\ \bar{\Sigma}^- \rightarrow \pi^0 \bar{p}, \bar{K}^+ \rightarrow K^- \pi^+ \\ \bar{\Sigma}^- \rightarrow \pi^0 \bar{p}, \bar{K}^+ \rightarrow K^- \pi^+ \\ \bar{\Sigma}^+ \rightarrow \pi^0 \bar{p}, \bar{K}^+ \rightarrow K^+ \pi^- \\ each channel has one event \end{array}$	$\begin{array}{c c} \mbox{secondary decays} & \mbox{nEvts} \\ & \mbox{9646} \\ f_0^{\prime} \rightarrow K^+K^- & \mbox{1784} \\ a_2^{\prime} \rightarrow K^+K^- & \mbox{516} \\ f_2(1270) \rightarrow K^+K^- & \mbox{444} \\ J/\psi \rightarrow p\bar{p} & \mbox{1} \\ \bar{\Sigma}^- \rightarrow \pi^0 \bar{p}, \bar{K}^+ \rightarrow K^-\pi^+ & \mbox{1} \\ \bar{\Sigma}^- \rightarrow \pi^0 \bar{p}, \bar{K}^+ \rightarrow K^-\pi^+ & \mbox{1} \\ \bar{\Sigma}^+ \rightarrow \pi^0 \bar{p}, \bar{K}^+ \rightarrow K^+\pi^- & \mbox{1} \\ \mbox{each channel has one event} & \mbox{34} \end{array}$

 None or negligible background event is remained in all other inclusive MC, i.e. 4190 and 4420 samples:

primary decays	secondary decays	nEvts	nCmltEvts
$e^+e^- ightarrow K^+K^-par{p}$		3438	3438
$e^+e^- ightarrow par{p}f_2(1270)$	$f_2(1270) ightarrow K^+ K^-$	88	3526
$e^+e^- ightarrow par{p}a_2^0$	$a_2^0 ightarrow K^+ K^-$	82	3608
$e^+e^- ightarrow K^+K^-J/\psi$	$J/\psi ightarrow par{p}$	6	3614
primary decays	secondary decays	nEvts	nCmltEvts
$e^+e^- ightarrow K^+K^-p\bar{p}$		4992	4992
$e^+e^- ightarrow par{p}f_2(1270)$	$f_2(1270) ightarrow K^+K^-$	143	5135
$e^+e^- ightarrow par{p}a_2^0$	$a_2^0 ightarrow K^+ K^-$	135	5270
$e^+e^- ightarrow K^+K^-J/\psi$	$J/\psi ightarrow par{p}$	13	5283
$e^+e^- ightarrow par{p}a_0^0$	$a^0_0 ightarrow K^+ K^-$	1	5284

- We will obtain signal yields by counting method.
- Intermediate states: $a_2(1320)^0$ and $f_2(1270)$ (or $a_0(980)^0$) in K^+K^- subsystem and $J/\psi \to p\bar{p}$.
- Not considered intermediate process $\Lambda(1520) \rightarrow pK^-$, neither does $\phi(1020) \rightarrow K^+K^-$.

< □ > < 同 > < 回 > < 回 >

Motivation and Dataset	Measurement of $\sigma(ee \rightarrow ppKK)$	Study of intermediate processes	Summary
	000000		
Background study and signal yi	elds		
Signal yields N_c	$_{bs}$ at each energy point		
450 400 3770 t data			60- 4200 L tata

• Fitting $N_{obs}/\mathcal{L}_{int}$ with $f(\sqrt{s}) = a/(\sqrt{s})^b$, before considering efficiency/ISR factor/etc.

Motivation and Dataset	Measurement of $\sigma(ee \rightarrow ppKK)$	Study of intermediate processes	Summary
	000000		
Efficiency determination			
Efficiency determination			

• Comparison with different intermediate channels, taking example of 4180 sample as

Decay channel	N _{gen.}	N _{rec} .	e (%)	$\delta\epsilon/\epsilon$
$e^+e^- o par{ ho}K^+K^-$	100,000	32571	32.6	-
$e^+e^- ightarrow \Lambda(1520)ar{\Lambda}(1520)$	100,000	38521	38.5	+18%
$e^+e^- ightarrow ho K^-ar\Lambda(1520)$	100,000	31053	31.1	-4.6%
$e^+e^- o par p \phi$	100,000	33849	33.8	+3.7%

- A difference between these efficiencies from different decay channels. Currently, efficiency from the first channel with PHSP model is used. We will consider a better model in furture.
- Efficiencies of each channel at different C.M energy points are listed in table of final cross sections in ??.
- Besides, ISR radiative factor and vacuum polarization factor are also obtained separately in above productions of different signal MC samples.

11- 000

イロトイロトイラトイラト

• Clear signals of $\Lambda(1520)$ and $\phi(1020)$ are observed.

212 DQC

Motivation and Dataset	Measurement of $\sigma(ee \rightarrow ppKK)$ 000000	Study of intermediate processes	Summary •
Summary			

- ▶ Observation of $e^+e^- \rightarrow p\bar{p}K^+K^-$ above 4 GeV are reported for the first time at BESIII with XYZ datasets. The Born cross sections will be measured after efficiency is obtained.
- ► Some significant intermediate processes are found.
 - $e^+e^- \rightarrow pK^-\bar{\Lambda}(1520)$ • $e^+e^- \rightarrow \Lambda(1520)\bar{\Lambda}(1520)$
 - $e^+e^-
 ightarrow par{p}\phi$,

< □ > < 同 > < 回 > < 回 >

Thank you for your attention. 谢谢!

Longke LI (李龙科) Room 622, Multidisciplinary Building Institute of High Energy Physics, CAS (IHEP) 19B, Yuquan Road, Shijingshan District Beijing, 100049, P. R. China 집 lilongke_ustc (ref. QR code) ③ (+86)-159-5693-4447 ≩ lilongke@ihep.ac.cn

χ^2 of vertex fit for each dataset

χ^2 of 3C fit for each dataset

$M(pK^{-})$ Vs. $M(\bar{p}K^{-})$ in $e^+e^- \rightarrow p\bar{p}K^+K^-$

$M(p\bar{p})$ Vs. $M(K^+K^-)$ in $e^+e^- \rightarrow p\bar{p}K^+K^-$

