Update cross section of $e^+e^- \rightarrow \gamma X(3872)$

Hang Zhou, Zhiqing Liu

Shandong University

Charmonium Group Meeting

June 3, 2019

Hang Zhou, Zhiqing Liu (SDU)

• Update on $e^+e^- \to \gamma X(3872)$ cross section measurement with new data sets.

▲ 夏 ▶ ▲

MC simulation and Datasets

BOSS Version:

• BOSS 7.0.3

Generator:

• $Y(4260) \rightarrow \gamma X(3872)$	P2GC1;
• $X(3872) \rightarrow \rho^0 J/\psi$	PHSP;
• $\rho^0 \rightarrow \pi^+ \pi^-$	VSS;
• $J/\psi \rightarrow e^+ e^-/\mu^+\mu^-$	PHOTOS VLL;

Signal MC:

- Y(4260) is generated by 'KKMC'
- 'EvtGen' for the following decays
- 30000 signal MC events at each energy points

Datasets:

$\sqrt{s}(\text{GeV})$	4.0076	4.2263	4.2580	4.3583
$\mathcal{L}(\mathrm{pb}^{-1})$	482.0	1101	828.4	543.9

Image: A match a ma

Initial event selection

Charged Tracks:

- |z| < 10 cm, r < 1 cm;
- nGood=4 && nCharge=0;
- $p_l > 1.0~{\rm GeV/c},~p_\pi < 1.0~{\rm GeV/c};$
- $E_e > 1.1$ GeV, $E_{\mu} < 0.35$ GeV.

Good Photons:

- $E_{\gamma} \ge 25$ MeV in barrel EMC ($|\cos \theta| \le 0.8$);
- $E_{\gamma} \geq 50$ MeV in end-cap ($0.86 \leq |\cos \theta| \leq 0.92$);
- $\Delta_{\text{angle}} \geq 20;$
- 0 < t < 14 (in unit of 50 ns).
- Vertex Fit: for $\pi^+\pi^-l^+l^-$.

4C Fit: for
$$\gamma \pi^+ \pi^- l^+ l^-$$
, $\chi^2 < 200$.

 e^+e^-

Further event selection

• γ -conversion background

(e) The open angle of $\pi^+\pi^-$ for 4.26 GeV data sample.

(f) The open angle of $\pi^+\pi^-$ for signal MC events at 4.26 GeV.

 $\cos(\pi^+\pi^-) < 0.98$, barely loose no efficiency

Hang Zhou, Zhiqing Liu (SDU)

Further event selection

• $\eta J/\psi$ background, $\eta \to \gamma \pi^+ \pi^-/\pi^+ \pi^- \pi^0$

(g) $\gamma \pi^+ \pi^-$ mass distribution for 4.26 GeV data sample.

(h) $\gamma \pi^+ \pi^-$ mass distribution for signal MC events at 4.26 GeV.

 $M(\gamma \pi^{+} \pi^{-}) > 0.6 \text{GeV/c}^{2}$, with $\epsilon > 99.8\%$

Total	30000	~
nGood=4&&nCharge=0	21354	
$1 \leq nGam \leq 5$	17433	100
$1\pi^+1\pi^-1l^+1l^-$	15549	c ,
$2.8 < M_{J/\psi} < 4.0$	14879	-
vertex fit	14762	L
4C fit ($\chi^2 < 200$)	11726	
4C fit ($\chi^2 < 60$)	9996	
$\cos(\pi^+\pi^-) < 0.98$	9995	201
$M_{\gamma\pi^+\pi^-} > 0.6$	9789	
$3.08 < M_{J/\psi} < 3.12$	9359	
e^+e^- events	3880	
$\mu^+\mu^-$ events	5479	
final efficiency	31.2%	

8/26

Hang Zhou, Zhiqing Liu (SDU)

Total	30000	S2200 4229 + MC remits
nGood=4&&nCharge=0	21351	- 0000
$1 \le nGam \le 5$	17938	O 1600 - M=3095.67±0.09 MeV O 1400 - 1400 - 5 5557240 00205 MeV
$1\pi^+1\pi^-1l^+1l^-$	15949	> 1200 € 0=5.50273:0.0528 MeV
$2.8 < M_{J/\psi} < 4.0$	15332	
vertex fit	15157	200
4C fit ($\chi^2 < 200$)	12141	03 3.023.043.063.08 3.1 3.123.143.163.18 3.2
4C fit ($\chi^2 < 60$)	10285	
$\cos(\pi^+\pi^-) < 0.98$	10284	4229 + WE NOTE
$M_{\gamma \pi^+ \pi^-} > 0.6$	10264	♥ 3500
$3.08 < M_{J/\psi} < 3.12$	9624	8 2500
e^+e^- events	3995	2000 = σ=2.44679±0.03089 MeV ⊆ 1500 =
$\mu^+\mu^-$ events	5629	ш 1000
final efficiency	32.1%	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hang Zhou, Zhiqing Liu (SDU)	$e^{+}e^{-}$	$\rightarrow \gamma X(3872)$ June 3, 2019

9 / 26

Total	30000	32200 4260 ↓ + w⊂ went
nGood=4&&nCharge=0	21276	
$1 \leq nGam \leq 5$	17839	01400 1200 g=5.74015±0.09139 MeV
$1\pi^+1\pi^-1l^+1l^-$	15868	
$2.8 < M_{J/\psi} < 4.0$	15268	
vertex fit	15090	200
4C fit ($\chi^2 < 200$)	11462	3 3.023.043.063.08 3.1 3.123.143.163.18 3.2
4C fit ($\chi^2 < 60$)	9472	
$\cos(\pi^+\pi^-) < 0.98$	9472	S3500 4260 + MC events
$M_{\gamma \pi^+ \pi^-} > 0.6$	9467	⊕ 3000 M=3871.86±0.03 MeV — Gaussian
$3.08 < M_{J/\psi} < 3.12$	8767	8 2500 - 0 2000 - 0=2.42609±0.03336 MeV
e^+e^- events	3659	₹ <u>1500</u>
$\mu^+\mu^-$ events	5108	Å 1000
final efficiency	29.2%	500 F
	•	. 3.8 3.82 3.84 3.86 3.88 3.9 3.92 3.94 M(π⁺π J/ψ) (GeV/c²) ევე
Hang Zhou, Zhiqing Liu (SDU)	e ⁺ e ⁻ -	$\rightarrow \gamma X(3872)$ June 3, 2019 10 / 26

Total	30000	[∞] 5 ¹⁶⁰⁰ ≥ 1400 4360
nGood=4&&nCharge=0	21323	
$1 \leq nGam \leq 5$	17964	8 1000 -
$1\pi^+1\pi^-1l^+1l^-$	15894	800 =
$2.8 < M_{J/\psi} < 4.0$	15280	
vertex fit	15105	200
4C fit ($\chi^2 < 200$)	8348	3 3.023.043.063.08 3.1 3.123.143.163.18 3.2
4C fit ($\chi^2 < 60$)	6846	
$\cos(\pi^+\pi^-) < 0.98$	6846	^N S ≥ 2500 - 4360 + ti⊂ overts
$M_{\gamma \pi^+ \pi^-} > 0.6$	6842	⊕ — Dadis Gasatian ↔ 2000 - M=3871.85±0.04 MeV — Gasatian
$3.08 < M_{J/\psi} < 3.12$	6310	ο 1500 - σ=2.41630±0.03728 MeV
e^+e^- events	2656	
$\mu^+\mu^-$ events	3654	
final efficiency	21.0%	
		$M(\pi^+\pi^-J/\psi)$ (GeV/c ²)
	1	

Hang Zhou, Zhiqing Liu (SDU)

 $e^+e^- \to \gamma X(3872)$

June 3, 2019 11 / 26

Remaining background

•
$$e^+e^- \rightarrow \gamma_{\rm ISR}\psi(2S), \ \psi(2S) \rightarrow \pi^+\pi^- J/\psi;$$

• $e^+e^- \rightarrow \gamma_{\rm ISR}\pi^+\pi^- J/\psi;$
• $e^+e^- \rightarrow \eta' J/\psi, \ \eta' \rightarrow \gamma \pi^+\pi^-;$
• $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-(\pi^0/\gamma).$

Since there is no peak background in the X(3872) signal region or very small contribution to our signal, such background can be estimated through J/ψ sidebands.

A D > A A > A > A

l^+l^- invariant mass distribution of data

 $3.80 < M_{\pi^+\pi^- J/\psi} < 3.95$

$\pi^+\pi^- J/\psi$ invariant mass distribution of data

$\pi^+\pi^- J/\psi$ invariant mass of all data samples combined

Fit X(3872) signal events in data

• Fit $\pi^+\pi^- J/\psi$ invariant mass with MC simulated histogram shape convolving a Gaussian function, plus a liner background term.

The Born cross section:

$$\sigma^{\rm B} = \frac{N^{\rm obs}}{\mathcal{L}_{\rm int}(1+\delta)\epsilon\mathcal{B}}$$

$\sqrt{s}(\text{GeV})$	$\mathcal{L}(\mathrm{pb}^{-1})$	$\epsilon(\%)$	$1+\delta$	$N^{\rm obs}$	$\sigma \cdot \mathcal{B}_{\pi^+\pi^- J/\psi}$
4.0076	482.0	31.2%	0.796		
4.2263	1101	32.1%	0.854	10.7 ± 3.0	0.30 ± 0.08
4.2580	828.4	29.2%	0.958	9.1 ± 2.7	0.33 ± 0.10
4.3583	543.9	21.0%	1.343		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fit X(3872) signal events from all data samples combined

• $MC_{4260} \otimes Gaussian + linear background.$

$\pi^+\pi^-$ mass distribution from $X(3872) \rightarrow \pi^+\pi^- J/\psi$

(q) $\pi^+\pi^-$ mass distribution from combined (n data.

(r) $\pi^+\pi^-$ mass distribution from 4.26 GeV signal MC.

 $\begin{array}{l} X(3872) \text{ mass window:} \\ 3.86 < M(\pi^+\pi^-J/\psi) < 3.88 \ \text{GeV} \\ X(3872) \text{ sideband:} \\ 3.83 < M(\pi^+\pi^-J/\psi) < 3.86 \ \text{or} \\ 3.88 < M(\pi^+\pi^-J/\psi) < 3.91 \ \text{GeV} \end{array}$

Take a glance at the new data

- Data simples: 4.13 GeV ($\sim 400 {\rm pb^{-1}})$ and 4.16 GeV ($\sim 408 {\rm pb^{-1}})$
- BOSS version: 7.0.4

$\pi^+\pi^- J/\psi$ invariant mass for 4.13 and 4.16 GeV data

Triangle singularity in the production of $\gamma X(3872)$

• If the X(3872) is a weakly bound charm-meson molecule, it can be produced via below process.

arXiv: 1904.12915

FIG. 3: Cross section for $e^+e^- \rightarrow X(3872)\gamma$ as a function of the center-of-mass energy W relative to the $D^{*0}\bar{D}^{*0}$ threshold. The solid curves in order of decreasing cross sections are for binding energies $|E_X| = 0.30$ MeV, 0.17 MeV, and 0.10 MeV. The dashed curves are the absorptive contributions, which approach the corresponding cross sections as W increases.

- 1) The peak is 2.2 MeV above the $D^{*0}\overline{D}^{*0}$ threshold (4.016 GeV);
- 2) The position of the peak is insensitive to $|E_X|$;
- 3) The height of the peak is insensitive to $|E_X|$

Conclusion:

 $\begin{array}{l} \sigma(e^+e^- \rightarrow \gamma X(3872)) \sim \\ 0.9 \mathrm{pb} @ 4.016 \mathrm{GeV} \end{array}$

$$3\% < \mathcal{B}_{X \to \pi^+ \pi^- J/\psi} < 33\%$$

arXiv: 1903.04355

Hang Zhou, Zhiqing Liu (SDU)

- So far the results of these four energy points (4.0076, 4.2263, 4.2580, 4.3583 GeV) are consistent with previous work;
- Only one X(3872) signal event in 4.130 GeV data set and two in 4.160 GeV data set;
- Taking data at 4.016 GeV is suggested.

Thanks for your attention!