

Charmed hadron decays at BESIII and future STCF

Xiao-Rui Lyu (吕晓睿)

(E-mail: <u>xiaorui@ucas.ac.cn</u>) University of Chinese Academy of Sciences (UCAS), Beijing

(On behalf of the BESIII collaboration)

Xiao-Rui LYU

赵老师与北京谱仪III实验

BESIII实验丰硕成果,为赵老师八十华诞祝寿! 祝赵老师身体健康、学术上耕耘不辍

Outline

≻Introduction

>BEPCII/BESIII

>Charmed hadron decays at BESIII

>Future prospects at STCF

Summary and Outlook

EXAMPLE 5 Frontiers of the Standard Model

Xiao-Rui LYU

量子色动力学的未来: 机遇与挑战

4

Charmed hadron

– key to the strong interaction

- Systems with strangeness
 - − Scale: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$: Relevant degrees of freedom?
 - Probes QCD in the confinement domain.
- Systems with charm
 - Scale: $m_c \approx 1300$ MeV: Quarks and gluons more relevant.
 - Probes QCD just below pQCD.

EXAMPLE SITE SET UP: SET UP:

Xiao-Rui LYU

Examples of the BEPCII Collider

Xiao-Rui LYU

EFAL Physics at tau-charm Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- D mesons
- f_D and f_{Ds}
- D₀-D₀ mixing
- Charm baryons

EFSII Data for studying charmed hadron decays

$D_{(s)}$ & Λ_c decays:

- (semi-)leptonic decays
- hadronic decays

Hereision measurement of CKM elements -- Test EW theory

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- Precision measurement of CKM matrix elements
- A precise test of SM model
- New physics beyond SM?

ESI Double Tag (DT) techniques

- 100% of beam energy converted to D pair (Clean environment, kinematic constrains v Recon.)
- $D_{(S)}$ generated in pair \Rightarrow absolute Branching fractions
- Fully reconstruct about 15% of $D_{(S)}$ decays

Double tag techniques: Hadronic tag on one side, on the other side for missing-mass studies (Double tag efficiency is high.)

Xiao-Rui LYU

Charmed meson decays

D(S) Leptonic decays

Purely Leptonic:

- Extract decay constant $f_{D(s)}$ incorporates the strong interaction effects (wave function at the origin)
- To validate Lattice QCD calculation of $f_{D(s)}$ and provide constrain of CKMunitarity

$$\Gamma(D_{(s)}^+ \to \ell^+ \nu_{\ell}) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} \mid V_{cd(s)} \mid^2 m_{\ell}^2 m_{D_{(s)}^+} \left(1 - \frac{m_{\ell}^2}{m_{D_{(s)}^+}^2}\right)$$

BESII PRD94(2016)072004

MM² ((GeV/c²)²)

(b)ST D sideband region

0.1 0.15

Will be updated using 4178 MeV data

$Harphi S \blacksquare \qquad \text{Observation of } D^+ \to \tau^+ \nu, \tau^+ \to \pi^+ \overline{\nu}$

arXiv:1908.08877 [hep-ex] accepted by PRL

14

Decay constant $f_{D(s)}$

Inputs:

PDG2018 from CKM unitarity: $|V_{cd}| = 0.22438 \pm 0.00044$

Inputs:

PDG2018 from CKM unitarity: $|V_{cs}| = 0.97359^{+0.00010}_{-0.00011}$

- Precisions of LQCD results are superior to experimental ones
- Hint of slight tension between exp. & LQCD results

EXAMPLE 5 $D_{(S)}$ Semi-Leptonic decays: *e*-mode

Semi-leptonic: form factor (FF)

- Measure $|V_{cx}| \ge FF$
- Charm physics:
 - CKM-unitarity $\Rightarrow |V_{cx}|$, extract FF, test LQCD
 - Input LQCD FF to test CKM-unitarity

$Here SII D_{(S)}$ Semi-Leptonic decays: μ -mode

Form factors $f_+^{D \to h}$

Precisions better than those of LQCD results

€€SШ

Form factors $f_+^{D_s \to \eta^{(\prime)}}$

Xiao-Rui LYU

Vcs and Vcd

Xiao-Rui LYU

EXETests of lepton flavor universality

$$R_{D^+_{(s)}} = rac{\Gamma(D^+_{(s)} o au^+
u_ au)}{\Gamma(D^+_{(s)} o \mu^+
u_\mu)} = rac{m^2_{ au^+} \left(1 - rac{m^2_{ au^+}}{m^2_{D^+_{(s)}}}
ight)^2}{m^2_{\mu^+} \left(1 - rac{m^2_{\mu^+}}{m^2_{D^+_{(s)}}}
ight)^2}.$$

SM prediction: $R_D = 2.67 \pm 0.01$ BESIII: $R_D = 3.21 \pm 0.64 \pm 0.43$ 1σ difference?

Future 20/fb @3773MeV data will improve these test.

2**σ** difference?

Xiao-Rui LYU

SL decays for spectroscopy study

 $D^+ \to \bar{K}_1(1270)^0 e^+ \nu_e$

ESII arXiv:1907.11370, accepted by PRL

Xiao-Rui LYU

Studies on $D_s^+ \rightarrow p \bar{n}$ and $\omega \pi^+$

$3.19 \text{ fb}^{-1} @E_{cm} = 4.178 \text{ GeV}$

- understanding the dynamical enhancement of W-annihilation
 - Short-distance vs Long-distance

BF enhanced BR due to long-distance effect via hadronic loop

PRL 123, 112001 (2019)

- First measurement (16.2 σ stat. significance)! BF(D_s⁺ \rightarrow a₀(980)⁺⁽⁰⁾ $\pi^{0(+)}$, a₀(980)⁺⁽⁰⁾ $\rightarrow \pi^{+(0)}\eta$) = (1.46±0.15±0.23)% Very large BF, compared to other W-annihilation decays (e.g., D_s \rightarrow pn̄/ ω \pi are all at 10⁻³ level).

One interpretation by Yu-Kuo Hsiao et al, arXiv:1909.07327 **Evidence for** $a_0(980)$ as tetraquark

Xiao-Rui LYU

The Λ_c^+ decays

₭ऽⅢ 2015年之前的粲重子衰变信息

Λ_{c} threshold production at BESIII

In 2014, BESIII took data above Λ_c pair threshold and run machine at 4.6GeV with excellent performance.

Measurement using the threshold pair-productions via $e^+e^$ annihilations is unique: *the most simple and straightforward*

First time to systematically study charmed baryon at threshold!

Physics output on the Λ_c^+

- Published 17 papers (7 PRLs)
- ... more will be coming

EXAMPLE 3 Absolute BFs of Λ_c^+ hadronic decays

- Absolute BF of Λc⁺ decays are still not well determined since its discovery 30 years ago. PDG2014: δB/B ~25%; BELLE2014: δB/B ~4.7%
- Tagging technique @BESIII will provide *the most simple and straightforward measurement* 567/ph @ 4.6 CoV

- The absolute BF can be obtained by the ratio of double tag yields to single tag yields.
- a global least square fit to 12 hadronic modes [Chin. Phys. C37(2013)106201]

/pb @ 4.	6 GeV	PRL	116, 05	2001 (201	6)
Mode	This work (%)	PDO	G (%)	BELLE \mathcal{B}	
pK ⁰	$1.52 \pm 0.08 \pm 0.01$.031.15	5 <u>± 0.</u> 30		
$ ho K^-\pi^+$	$5.84 \pm 0.27 \pm 0.21$. <u>23 5.</u> 0 :	± 1.3	<u>6.84 ± 0.24</u>	+0.21 -0.27
$pK_S^0\pi^0$	$1.\overline{87}\pm \overline{0.13}\pm 0.$.05 1.65	5 ± 0.50		
$ ho K_S^0 \pi^+ \pi^-$	$1.53\pm0.11\pm0.01$.09 1.30	$)\pm0.35$		
$ ho K^- \pi^+ \pi^0$	$4.53\pm0.23\pm0.2$.30 3.4	±1.0		
$\Lambda\pi^+$	$1.24\pm0.07\pm0.0$.03 1.07	2 ± 0.28		
$\Lambda\pi^+\pi^0$	$7.01\pm0.37\pm0.0$.19 3.6	± 1.3		
$\Lambda\pi^+\pi^-\pi^+$	$3.81\pm0.24\pm0.24$.18 2.6	\pm 0.7		
$\Sigma^0\pi^+$	$1.27\pm0.08\pm0.0$.03 1.05	5 ± 0.28		
$\Sigma^+\pi^0$	$1.18\pm0.10\pm0.0$.03 1.00	$)\pm$ 0.34		
$\Sigma^+\pi^+\pi^-$	$4.25\pm0.24\pm0.2$.20 3.6	±1.0		
$\Sigma^+\omega$	$1.56\pm0.20\pm0.00$.07 2.7	±1.0		

- ✓ First direct measurement on ∧c BFs at threshold
- ✓ $B(pK^{-}\pi^{+})$: BESIII precision comparable with Belle's
- ✓ Improved precisions of the other 11 modes significantly

BF for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

- $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ is a $c \rightarrow s l^+ \nu_l$ dominated process.
- Urgently needed for LQCD calculations.
- No direct absolute measurement for $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$ available.

 $\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e) = (2.1 \pm 0.6)\%$ PDG 2014

567/pb @ 4.6 GeV

- First absolute measurement of the semi-leptonic decay
- Statistics limited
- Best precision to date: twofold improvement
- > We also measure the muonic mode [PLB 767, 42 (2017)]

The first Lattice calculation on Λ_c^+ SL decays

PRL 118, 082001 (2017)

PHYSICAL REVIEW LETTERS

week ending 24 FEBRUARY 2017

$\Lambda_c \rightarrow \Lambda l^+ \nu_l$ Form Factors and Decay Rates from Lattice QCD with Physical Quark Masses

Stefan Meinel

Department of Physics, University of Arizona, Tucson, Arizona 85721, USA and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA (Received 1 December 2016; published 21 February 2017)

Input the measured BFs from BESIII

$$\mathcal{B}(\Lambda_c \to \Lambda \ell^+ \nu_\ell) = \begin{cases} 0.0363(38)(20), & \ell = e, \\ 0.0349(46)(27), & \ell = \mu. \end{cases}$$

Triggered by BESIII

The first LQCD calculations on BFs and form factors

$$\mathcal{B}(\Lambda_c \to \Lambda \ell^+ \nu_\ell) = \begin{cases} 0.0380(19)_{\text{LQCD}}(11)_{\tau_{\Lambda_c}}, \ \ell = e, \\ 0.0369(19)_{\text{LQCD}}(11)_{\tau_{\Lambda_c}}, \ \ell = \mu, \end{cases}$$

Xiao-Rui LYU

Λ_c decay asymmetries PRD100, 072004 (2019)

• 4(6)-fold angular analysis of the cascade decays of $\Lambda_c \rightarrow pK_s, \Lambda \pi^+, \Sigma^+ \pi^0$ and $\Sigma^0 \pi^+$ based on 567/pb data

- Best precisions on the hadronic weak decay asymmetries
- The transverse polarization is firstly studied and found to be non-zero with 2.1 σ

Xiao-Rui LYU

A theoretical Framework for Charmed Hadrons

from Fu-Sheng Yu

- Topological diagrams + Symmetries + Experimental inputs
 ⇒ to understand the decaying dynamics, predicting
 double-charm baryon decays, CPV, etc. (predictive power)
 - Λ_c^+ branching fractions used for global analysis
 - $\Rightarrow \mathcal{Z}_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ and $\mathcal{Z}_c^+ \pi^+$ are large enough for observation.

 Λ_c^+ BFs from BESIII \rightarrow Stronger predictive power

Xiao-Rui Ly u

重于巴动力字的未来: 机遇与挑战

Yet unknowns

- Many of the following modes are not measured ($\sim 40\%$)
 - most of the semileptonic (SL) modes
 - the singly Cabibbo-Suppressed (CS) and doubly CS hadronic modes
 - the neutron- and K_L-involved channels
- Amplitude analysis of the three- and four-body decays
 - important to study the excited hyperons
 - to study the decay types of $B\left(\frac{1}{2}^+\right)V$ and $B\left(\frac{3}{2}^+\right)P$
 - not much have been done yet

From BESIII physics (yellow) book to BESIII white paper

2008

2019

White Paper on the Future Physics Programme of BESIII

The BESIII collaboration[¶]

and

L. Calibbi^e, J. Charles^a, H. Y. Cheng^d, S. I. Eidelman^{bg}, S. Descotes-Genon^f, F.-K. Guo^{e,4}, A. A. Petrov^f, J. L. Rosner^h, Z.-Q. Zhang^e

 ^a Aix-Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
 ^b Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, 630090, Russia
 ^c Institute of Theoretical Physics, Beijing 100190, People's Republic of China
 ^d Institute of Physics, Academia Sinica, Taivan 115, Republic of China
 ^e Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, F-91898, Orsay Cedex, France
 ^f Laboratoire de Physique Théorique, UMR 8627, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
 ^g Novosibirsk State University, Novosibirsk, 630090, Russia
 ^k University of Chicago, 5620 S. Ellis Avenue, Chicago, IL 60637, USA
 ⁴ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

IHEP-Physics-Report-BESIII-2019-8-3 for international review

[¶]Author list shown on the following pages

Xiao-Rui LYU

High precision charm physics at thresholds

Observables	Exp. measure	BESIII	Belle-II	LHCb
$B(D^+ \rightarrow l\nu)$	$f_D V_{cd} $	1.1%	1.4%	N/A
$B(D_S^+ \to l\nu)$	$f_{Ds} V_{cs} $	1.0%	1.0%	N/A
$B(D^+ \rightarrow l\nu)$	$f_D V_{cd} $	1.0%	1.4%	N/A
$\overline{B(D_S^+ \to l\nu)}$	$\overline{f_{Ds} V_{cs} }$			
$d\Gamma(D\to\pi l\nu)/dq^2$	$f_{D \to \pi}(0) V_{cd} $	0.6%	1.0%	N/A
$d\Gamma(D \to K l \nu)/dq^2$	$f_{D\to K}(0) V_{cs} $	0.5%	0.9%	N/A
$d\Gamma(D_S\to K l\nu)/dq^2$	$f_{Ds \to K}(0) V_{cd} $	1.3%	N/A	N/A
$d\Gamma(D_S\to\phi l\nu)dq^2$	$f_{Ds \to \phi}(0) V_{cs} $	1.0%	N/A	N/A

BESIII: 20fb⁻¹ @ 3770 MeV, 6fb⁻¹ @ 4180 MeV, arXiv: 0809.1869 (BESIII physics book) Belle-II: 50 ab⁻¹ @ Y(4S) arXiv: 1808.10567 (Belle-II physics book) LHCb: : <u>arXiv:1808.08865 for upgrade-II</u>

Approved data taking between 4.6~4.7 GeV in 2020

- We will accumulate at least 10~20x more Λ_c pairs (1~2 M)
- Irreplaceable sample to systematically refresh the whole Λ_c knowledge and impact relevant theoretical and experimental studies

Impacts on Λ_c decay data

€€SШ

 Λ_c

L	
D ⁺ _s BRANCHING RATIOS	Baryon Particle Listings
A number of older, now obsolete results have been omitted. They may be found in earlier editions.	Λ_{c}^{+}
	nto the
Γ(e ⁺ semileptonic)/Γ _{total}	$\prod_{\Gamma(\Lambda\pi^+)/\Gamma(\rho K^-\pi^+)} \Gamma_{28}/\Gamma_2$
has been subtracted off. The sum of our (non-p) the binding factions $-a e^{+\nu_e}$ D_s Brance	Ching CLV EVTS DOCUMENT ID TECN COMMENT 0.208±0.009 OUR FIT Error includes scale factor of 1.2.
$\frac{VALUE (units 10^{-2})}{VALUE (units 10^{-2})} = \frac{EVTS}{EVTS} = \frac{DOCUMENT II}{TECN} = \frac{TOCMMENT}{TECN} = \frac{TOCMT}{TECN}$	0.204±0.019 OUR AVERAGE
6.52 ± 0.39 ± 0.15 536 ± 29 ¹ ASNER 10 CLEO p^+e^- at 37 p^+ MeV $ $ \square	0.18 ±0.03 ±0.04 ALBRECHT 92 ARG $e^+e^- \approx 10.4$ GeV
semileptonic widths is 0.828 ± 0.051 ± 0.025.	Ements. 0.18 ±0.03 ±0.03 87 AVERY 91 CLEO e ⁺ e ⁻ 10.5 GeV Call DLS
$\frac{1}{1} \frac{\pi^{+} \operatorname{anything}}{1} \frac{1}{1} \frac{1}$	 <0.33 90 ANJOS 90 E691 γBe 70-260 GeV domination
included. VALUE (units 10 ⁻²) <u>DOCUMENT ID</u> <u>TECN</u> <u>CO (MENT</u>	<0.16 90 ALBRECHT 88C ARG e^+e^-10 GeV Most Br
119.3±1.2±0.7 DOBBS 19 CLEO e ⁻¹ e ⁻ at 4170 MeV DOMINAT	$\frac{1}{1000} \text{CF} \qquad \Gamma(\Lambda \pi^+ \pi^0) / \Gamma_{\text{total}} \qquad \qquad \Gamma_{29} / \Gamma \qquad \qquad \Gamma_{29} / \Gamma$
$I(\pi^- anything)/I_{total}$ Events with two π^- 's count twice, etc. But π^- 's from $K_{0}^0 \to \pi^+\pi^-$ are not MODOS	Many 7.0 ±0.4 OUR FIT Error includes scale factor of the Stat. Error
included.	7.01±0.37±0.19 1497 ABLIKIM 16 BES3 $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$, 4.599 GeV
13.2±0.9±0.3 DOBBS 19 CLEO e ⁻ e ⁻ 4170 MeV SCS&DC	$\int S \qquad \Gamma(\Lambda \pi^+ \pi^0) / \Gamma(\rho K^- \pi^+) \qquad \qquad$
$(\pi^{*} \operatorname{anytning})/1 \operatorname{total}$ Events with two π^{0} 's count twice, etc. But π^{0} 's from $K_{S}^{0} \rightarrow \pi$ are put included. MODES	1.13±0.06 OUR FIT Error includes scale factor of 1.1. <u>ECOMMENT</u> Many SC
ALUE (units 10 ⁻²) DOCUMENT ID TECN COMMENT 234+38+53 DOBRS P. CLEO P. F.	0.73±0.09±0.16 464 AVERY 94 CLE2 $e^+e^- \approx \Upsilon(35), \Upsilon(45)$
$\Gamma(K^- \text{anything})/\Gamma_{\text{total}}$	$G_{\star} = \Gamma(\Lambda \rho^+)/\Gamma(\rho K^- \pi^+) \qquad \Gamma_{30}/\Gamma_2 = \Gamma_{50}/\Gamma_2$
VALUE (units 10 ⁻²) <u>DOCUMENT ID</u> <u>TECN 0 UMENT</u>	VALUE <u>CL% DOCUMENT ID TECN COMMENT</u> <0.95 95 AVERY 94 CLE2 $e^+e^- \approx \Upsilon(35) \Upsilon(45)$
$\Gamma(K^+ \text{anything})/\Gamma_{\text{trans}}$	$\Gamma(A=2-2+1)/\Gamma_{a}$
VALUE (units 10 ⁻²) DOCUMENT ID <u>TECN</u> <u>CO</u> IMENT	VALUE (%) EVTS DOCUMENT ID TECN COMMENT
28.9±0.6±0.3 DOBBS 09 CLEO e ⁻ e ⁻ at 4170 MeV	3.61±0.29 OUR FIT Error includes scale factor of 1.3. 3.81±0.24±0.18 609 ARTIKIM 16 RES3 $e^+e^- \rightarrow \sqrt{4}$ 4.599 GeV
$\frac{(\wedge_{\tilde{g}} \text{ any child})/(1 \text{ total})}{ALUE (units 10^{-2})} \underline{DOCUMENT ID} \underline{TECN} \underline{CC} \underline{MENT}$	$\Gamma(A=2+1)/\Gamma(A=+2)$
19.0 \pm 1.0 \pm 0.4 DOBBS 19 CLEO e^-e^- at 4170 MeV	VALUE EVTS DOCUMENT ID TECN COMMENT
This ratio includes η particles from η' decays.	0.58 ±0.05 OUR FIT Error includes scale factor of 2.0. 0.522±0.032 OUR AVERAGE
VALUE (units 10^{-2}) EVTS DOCUMENT IL TECN DMMENT 29.9±2.2±1.7 DOBBS 09 CLEO $^+e^-$ at 4170 MeV	$0.508 \pm 0.024 \pm 0.024$ 1356 LINK 05F FOCS γ nucleus, $\overline{E}_{\gamma} \approx 180$ GeV
• • We do not use the following data for averages fits, limits, etc. • • • $235+31+20$ 674 + 91 HUANG 068 CLEO we DOBBS 09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\Gamma(\omega \text{ anything})/\Gamma_{\text{total}}$ Γ_9/Γ	$0.94 \pm 0.41 \pm 0.13$ 10 BARLAG 90D NA32 π^{-2} 230 GeV
VALUE (units 10 ⁻²) <u>DOCUMENT ID TECN CO IMENT</u>	
$\Gamma(\eta' \text{ anything})/\Gamma_{\text{total}}$	$ \begin{array}{c} I(2(1385), \pi, \pi, 2, \gamma, \gamma,$
VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN CO IMENT	0.28±0.10±0.08 INK 05F FOCS γ nucleus, $\overline{E}_{\gamma} \approx 180 \text{ GeV}$
USE In OUR AVERAGE Effort includes scale factor of 1.1. 8.8 ± 1.8 ± 0.5 68 ABLIKIM 5z BES3 48 pb ⁻¹ , 4009 MeV 1.7 ± 1.7 ± 0.7 DOBDS 0 0.102 T T 1.7 ± 1.7 ± 1.7 ± 1.7 ± 1.7 ± 1.1 ± 1.1 ± 1.7 ± 1.7 ± 1.1 ± 1.7 ± 1.7 ± 1.1 ± 1.7 ± 1.7 ± 1.7 ± 1.7 ± 1.1 ± 1.7 ± 1.7 ± 1.7 ± 1.1 ± 1.7 ± 1	$\Gamma(\Sigma(1385)^{-}2\pi^{+}, \Sigma^{*-} \rightarrow \Lambda\pi^{-})/\Gamma(\Lambda\pi^{-}2\pi^{+}) \qquad \Gamma_{33}/\Gamma_{31}$
• • We do not use the following data for averages fits, limits, etc. • • •	VALUE DOCUMENT ID TECN COMMENT
$8.7 \pm 1.9 \pm 0.8$ 68 HUANG 68 CLEO Set DOBBS 09	ULLEVUSEUUZ LINK USF FOLS γ nucleus, $E_{\gamma} \approx 180$ GeV
$\begin{array}{c} (10(300) \text{ any cmilk}, 10 \rightarrow \pi^+\pi^-)/1 \text{ total} \\ (11/1) \\ (ALUE (units 10^{-2}) \\ CL\% \\ DOCUMENT ID \\ TECN \\ CC \ MENT \\ \end{array}$	$\Gamma(\Lambda \pi^+ \rho^{\rm U})/\Gamma(\Lambda \pi^- 2\pi^+) \qquad \Gamma_{34}/\Gamma_{31}$
<1.3 90 DOBBS 19 CLEO e ⁻¹ e at 4170 MeV	0.40±0.12±0.12 LINK 05F FOCS γ nucleus, $\overline{E}_{\gamma} \approx 180$ GeV
F(φ anything)/F _{total} VALUE (units 10 ⁻²) EVTS DOCUMENT IL TECN DMMENT	$\Gamma(\Sigma(1385)^+ \rho^0, \Sigma^{*+} \to \Lambda \pi^+) / \Gamma(\Lambda \pi^- 2\pi^+)$ $\Gamma_{35} / \Gamma_{33}$
15.7±0.8±0.6 DOBBS 09 CLEO ⁺ <i>e</i> [−] at 4170 MeV ••• We do not use the following data for averages fits, limits, etc. ••	VALUE DOCUMENT ID TECN COMMENT
16.1±1.2±1.1 398±27 HUANG 068 CLEO : DOBBS 09	0.14 \pm 0.09 \pm 0.07 LINK 05F FOCS γ nucleus, $\overline{E}_{\gamma} pprox$ 180 GeV
$\Gamma(K^+K^- \text{anything})/\Gamma_{\text{total}}$ Γ_{13}/Γ	$\Gamma(\Lambda \pi^{-}2\pi^{+} \text{ nonresonant})/\Gamma(\Lambda \pi^{-}2\pi^{+})$ Γ_{36}/Γ_{31}
VALUE (Units 10 -) DOCUMENT ID TECN COMMENT 15.8±0.6±0.3 DOBBS 9 CLEO e ⁻¹ e ⁻¹ at 4170 MeV	VALUE <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> <0.3 90 LINK 05F FOCS γ nucleus. \overline{E} . ≈ 180 GeV
RuilYU H子色元 量子色元	动力学的未来。机两与构成

€SI

Future data taking proposals

A simple reference table (can be modified according to future machine status)

Energy	Physics motivations	Current data	Expected final data	$T_{ m C}$ / $T_{ m U}$
4.6 - 4.9 GeV	Charmed baryon/ XYZ	$0.56 \ {\rm fb}^{-1}$	$15 { m fb}^{-1}$	1490/600 days
	$\operatorname{cross-sections}$	at $4.6 \mathrm{GeV}$	at different \sqrt{s}	
$4.74 \mathrm{GeV}$	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	$1.0 { m ~fb^{-1}}$	100/40 days
4.91 GeV	$\Sigma_c \overline{\Sigma}_c$ cross-section	N/A	$1.0 { m ~fb^{-1}}$	120/50 days
$4.95~{ m GeV}$	Ξ_c decays	N/A	$1.0 {\rm ~fb^{-1}}$	130/50 days

Prospects at the STCF

Xiao-Rui LYU

量子色动力学的未来:机遇与挑战

43

Prospects at the STCF

Data samples with 1 ab⁻¹ integral luminosity

	STCF				Belle II			
Data Set	process	$\sigma/{\rm nb}$	N	ST eff./ $\%$	ST N	$\sigma/{\rm nb}$	N	Tag N
J/ψ	_	_	1.0×10^{12}	_	_	_	_	_
$\psi(2S)$	_	_	$3.0 imes 10^{11}$	_	_	_	_	_
D^0	$D^0 \bar{D^0}(3.77)$	~ 3.6	3.6×10^9	10.8	0.78×10^9	_	1.4×10^9	_
D^+	$D^+D^-(3.77)$	~ 2.8	2.8×10^9	9.4	0.53×10^9	_	7.7×10^{8}	_
D_s	$D_s D_s^*(4.18)$	~ 0.9	$0.9 imes 10^9$	6.0	0.11×10^9	_	2.5×10^8	_
_+	$\tau^{+}\tau^{-}(3.68)$	~ 2.4	2.4×10^9	_	_	0.9	$0.9 imes 10^9$	_
au :	$\tau^{+}\tau^{-}(4.25)$	~ 3.6	3.5×10^9	_	_	_	_	_
Λ_c	$\Lambda_c \Lambda_c (4.64)$	~ 0.6	5.5×10^8	5.0	0.55×10^8	_	1.6×10^8	$3.6 \times 10^{4*}$

The luminosity is 1.0 ab⁻¹. * process $e^+e^- \rightarrow D^{(*)-}\bar{p}\pi^+\Lambda_c^+$.

- Belle-II (50/ab) has 50~100 times more statistics
- STCF is expected to have higher detection efficiency
- STCF has low backgrounds for productions at threshold

Sensitivities of the charmed meson decays

		J	
	BESIII	STCF	Belle II
Luminosity	2.92 fb ⁻¹ at 3.773 GeV	1 ab ⁻¹ at 3.773 GeV	50 ab ⁻¹ at $\Upsilon(nS)$
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	5.1% _{stat.} 1.6% _{syst.} [6]	0.28% _{stat.}	-
f_{D^+} (MeV)	2.6%stat. 0.9%syst. [6]	0.15% _{stat.}	-
$ V_{cd} $	2.6% _{stat.} 1.0% [*] _{syst.} [6]	0.15% _{stat.}	-
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	$20\%_{\text{stat.}} 10\%_{\text{syst.}}^{\dagger}$ [7]	0.41% _{stat.}	-
$\mathcal{B}(D^+ o au^+ u_ au)$	21% , $10\%^{\dagger}$ [7]	0 50%	_
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	21 /0 stat. 10 /0 syst. [/]	0.50 /0 _{stat} .	
Luminosity	3.2 fb ⁻¹ at 4.178 GeV	1 ab ⁻¹ at 4.009 GeV	50 ab ⁻¹ at $\Upsilon(nS)$
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	2.8% _{stat.} 2.7% _{syst.} [8]	0.30% _{stat.}	0.8% _{stat.} 1.8% _{syst.}
$f_{D_s^+}$ (MeV)	1.5% _{stat.} 1.6% _{syst.} [8]	0.15% _{stat.}	-
$ V_{cs} $	1.5% _{stat.} 1.6% _{syst.} [8]	0.15% _{stat.}	-
$f_{D_s^+}/f_{D^+}$	3.0% _{stat.} 1.5% _{syst.} [8]	0.21% _{stat.}	-
$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$	$2.2\%_{\mathrm{stat.}} 2.6\%_{\mathrm{syst.}}^{\dagger}$	0.24% _{stat.}	0.6%stat. 2.7%syst.
$f_{D_s^+}$ (MeV)	$1.1\%_{\rm stat.} 1.5\%_{ m syst.}^{\dagger}$	0.11% _{stat.}	-
$ V_{cs} $	$1.1\%_{\rm stat.} 1.5\%_{\rm syst.}^{\dagger}$	0.11% _{stat.}	-
$\overline{f}_{D_s^+}^{\mu\& au}$ (MeV)	$0.9\%_{\mathrm{stat.}} 1.0\%_{\mathrm{syst.}}^{\dagger}$	0.09% _{stat.}	0.3% _{stat.} 1.0% _{syst.}
$ \overline{V}_{cs}^{\mu\& au} $	$0.9\%_{stat.} 1.0\%_{syst.}^{\dagger}$	0.09%stat.	-
$\frac{\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})}{\mathcal{B}(D_s^+ \to \mu^+ \nu_{\mu})}$	3.6% _{stat.} 3.0% [†] _{syst.}	0.38% _{stat.}	0.9% _{stat.} 3.2% _{syst.}

EXAMPLE 1 Determination of γ/ϕ_3 angle in CKM

STCF will provide complementary information on the strong phase and allow detailed comparisons in different models

Charmed Baryons at STCF

Charmed baryons are produced via $e^+e^- \rightarrow B_{1c}B_{2c}$ with $B_{ic} = n_1n_2c$

 Systematic measurement of absolute decay BFs with well controlled systematics and low backgrounds

	Structure	J^P	Mass, MeV	Width,MeV	Decay
Λ_c^+	udc	$(1/2)^+$	2286.46 ± 0.14	(200 ± 6) fs	weak
Ξ_c^+	usc	$(1/2)^+$	$2467.8^{+0.4}_{-0.6}$	$(442\pm26)~{\rm fs}$	weak
Ξ_c^0	dsc	$(1/2)^+$	$2470.88\substack{+0.34\\-0.8}$	112^{+13}_{-10} fs	weak
Σ_c^{++}	uuc	$(1/2)^+$	2454.02 ± 0.18	2.23 ± 0.30	$\Lambda_c^+\pi^+$
Σ_c^+	udc	$(1/2)^+$	2452.9 ± 0.4	< 4.6	$\Lambda_c^+\pi^0$
Σ_c^0	ddc	$(1/2)^+$	2453.76 ± 0.18	2.2 ± 0.4	$\Lambda_c^+\pi^-$
$\Xi_c^{\prime+}$	usc	$(1/2)^+$	2575.6 ± 3.1	_	$\Xi_c^+ \gamma$
$\Xi_c^{\prime 0}$	dsc	$(1/2)^+$	2577.9 ± 2.9	_	$\Xi_c^0 \gamma$
Ω_c^0	ssc	$(1/2)^+$	2695.2 ± 1.7	(69 ± 12) fs	weak
Σ_c^{*++}	uuc	$(3/2)^+$	2518.4 ± 0.6	14.9 ± 1.9	$\Lambda_c^+\pi^+$
Σ_c^{*+}	udc	$(3/2)^+$	2517.5 ± 2.3	< 17	$\Lambda_c^+\pi^0$
Σ_c^{*0}	ddc	$(3/2)^+$	2518.0 ± 0.5	16.1 ± 2.1	$\Lambda_c^+\pi^-$
Ξ_c^{*+}	usc	$(3/2)^+$	$2645.9^{+0.5}_{-0.6}$	< 3.1	$\Xi_c \pi$
Ξ_c^{*0}	dsc	$(3/2)^+$	2645.9 ± 0.5	< 5.5	$\Xi_c \pi$
Ω_c^{*0}	SSC	$(3/2)^+$	2765.9 ± 2.0	_	$\Omega_c^0 \gamma$

€SII

Summary and Outlook

- The charm program at BESIII is well proceeding.
- Near threshold production is unique to directly measure the decay properties of the charmed hadrons, such as D, Ds, Λ_c
 - Most precise measurements of decay constant and form factors
 - > Firstly mapping out the full picture of Λ_c decay patterns.
- More data will be accumulated in the future 5-10 years
 - To improve our knowledge on NPQCD in charmed region
- Opportunities to study Ξ_c @4.95 GeV
- More comprehensive precision studies will be promising at STCF

Thank you! 谢谢!

ESI Competition from Belle & BelleII

- Belle tags ~36K Λ_c^+ , while BESIII now tags 15K Λ_c^+ (567/pb@4.6GeV)
- By middle of 2019, BELLEII will have 5/ab data, 5x of BELLE data;
 → 180K tagged Λ⁺_c;
- We will have 150K tagged Λ_c^+ , however, BESIII is very clean
- Many precise measurements at BESIII will reach to the level of systematic dominated
 - → BESIII has advantages on backgrounds and systematics

World campaign on the Λ_c^+

	BESIII	Belle(-II)	LHCb
Λ_{c}^{+} total yields	***	****	****
S/B ratio	****	**	**
Systematic error	****	***	**
Systematic research	****	***	*
Semi-leptonic mode	****	***	*
<i>n/K</i> L-involved mode	****	**	公
Photon final state	****	****	☆
Absolute measurement	****	***	\$

- The threshold data at BESIII have systematic advantage over Belle(-II) and LHCb in the Λ_c^+ studies.
- This proposal holds an optimal time window to maximize the visibility of BESIII physics.

Xiao-Rui LYU

Measurement of the Decays $\Lambda_c \to \Sigma \pi \pi$ at Belle

arXiv: 1802.03421

EFAL Future Facilities for Charm study

Xiao-Rui LYU

0.8

EXAMPLE 1 Lineshape of $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$

Belle: PRL101, 172001 (2008) BESIII: PRL120,132001(2018)

Machine upgrades:

- ✓ Energy upgrades
- ✓ Lumi improvement @ higher energy
- "Topup" injections

Some tensions between Belle and BESIII data on $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ BESIII future data above 4.6 GeV will follow a sharp rise of the Y(4660) or a flat cross section near threshold?

Charmed baryons productions

from Marek Karliner

In the charmed baryon system, the light quarks are more like di-quarks

 $\Lambda_c^+(c[ud]_{spin=0}), \ \Sigma_c(c[ud]_{spin=1})$

The spin-0 diquarks: "good" diquarks The spin-1 one : "bad" diquarks. The bad diquarks are heavier. So if the hadronization from the initial (ccbar) proceeds in one step, by attaching

diquarks, it will provide a simple and natural explanation for

the fact that the Λ_c cross section is much bigger than that of $\Sigma_c.$

Belle, arXiv:1706.06791

Then how about the behaves at the threshold, and to test it at BESIII will be very interesting!