祝赵光达老师八十大寿生日快乐! 桃李峥嵘,青春常在!

Some New Progress on Hadron Spectroscopy -- **Penta-quark and** 1⁻⁺ **Tetra-quark States**

Bing-Song Zou

Institute of Theoretical Physics, CAS, Beijing University of Chinese Academy of Sciences, Beijing, China

Outline :

- 1. Quenched & unquenched quark models
- 2. P_c penta-quark states & its strange and beauty partners
- **3.** 1⁻⁺ Tetra-quark states
- 4. Prospects

1. Quenched & unquenched quark models

SU(3) 3q-quark model for baryons

Prediction $m_{\Omega} \cong 1670 \text{ MeV}$ Expt. $m_{\Omega} \cong 1672.45 \pm 0.29 \text{ MeV}$

 Ω^* predicted by K.T.Chao, Isgur, Karl, PRD38 (1981) 155

A key problem in QCD and hadron structure Unquenching dynamics: gluons → qq crucial for quark confinement & hadron structure

quenched or unquenched quark models give very different predictions of baryon spectrum

1/2⁻ baryon nonet with strangeness

- Mass pattern : quenched or unquenched ?
 - uds (L=1) $1/2^- \sim \Lambda^*(1670) \sim [us][ds] \overline{s}$
 - uud (L=1) $1/2^- \sim N^*(1535) \sim [ud][us] \overline{s}$
 - uds (L=1) $1/2^- \sim \Lambda^*(1405) \sim [ud][su] \overline{u}$
 - uus (L=1) $1/2^- \sim \Sigma^*(1390) \sim [us][ud] \overline{d}$

Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

• Strange decays of N*(1535) : PDG \rightarrow large $g_{N^*N\eta}$

 $J/\psi \rightarrow pN^* \rightarrow p(K\Lambda) / p(p\eta) \rightarrow large g_{N^*K\Lambda}$ Liu&Zou, PRL96 (2006) 042002; Geng, Oset, Zou&Doring, PRC79 (2009) 025203 $\gamma p \rightarrow p\eta' \& pp \rightarrow pp\eta' \rightarrow large g_{N^*N\eta'}$ M.Dugger et al., PRL96 (2006) 062001; Cao&Lee, PRC78(2008) 035207 $\pi^- p \rightarrow n\phi \& pp \rightarrow pp\phi \& pn \rightarrow d\phi \rightarrow large g_{N^*N\phi}$ Xie, Zou & Chiang, PRC77(2008)015206; Cao, Xie, Zou & Xu, PRC80(2009)025203

• Strange decays of $\Lambda^*(1670)$: PDG \rightarrow large $g_{\Lambda^*\Lambda\eta}$ narrower width (35MeV) than $\Lambda^*(1405)$

quench vs un-quench for mesons

 $D^*_{s0}(2317) \sim \overline{sc} (L=1) + [qs][qc] + DK + ...$ $D^*_{s1}(2460) \sim \overline{sc} (L=1) + D^*K + ...$ $X(3872) \sim \overline{cc} (L=1) + [qc][qc] + D^*D + ...$

Important implications:

<u>qqqqq</u> in S-state more favorable than <u>qqq</u> with L=1 !
 & qqqq in S-state more favorable than qq with L=1 !

1/2⁻ baryon nonet ~
$$\overline{q}q^2q^2$$
 state + ...
0⁺ meson octet ~ \overline{q}^2q^2 state + ...

Draging out qq from gluon field – an important excitation mechanism for hadrons ! multiquark components are important for hadrons !

Long journey to pin down pentaquark states

Fate of the first pentaquark predicted and observed:

- **1959:** KN molecule predicted by Dalitz-Tuan, PRL2, 425
- **1961:** $\Lambda(1405) \rightarrow \Sigma \pi$ observed by Alston et al., PRL6, 698
- **1964:** Quark model (uds) for $\Lambda(1405)$
- **1995:** KN dynamically generated -- Kaiser et al., NPA954, 325
- **2001:** 2 pole structure by \overline{KN} - $\Sigma\pi$ -- Oller et al., PLB500, 263

PDG2010: "The clean Λ_c spectrum has in fact been taken to settle the decades-long discussion about the nature of the $\Lambda(1405)$ —true 3-quark state or mere KN threshold effect? unambiguously in favor of the first interpretation."

Fate of the last famous fading pentaquark $\theta^+(1540)$:

- **1997:** Z⁺ (1530) predicted by Diakonov et al., ZPA359, 305
- 2003: $\theta^+(1540) \rightarrow K^+n$ claimed by LEPS, PRL91, 012002
- **2003:** s (ud)(ud) for $\theta(1540)$ by Jaffe&Wilczek, PRL91, 232003
- 2003: s ud)(ud) for $\theta(1540)$ by Karliner&Lipkin, PLB575, 249
- **2004:** supported by 10 expts $\rightarrow \theta(1540)$ well-established by PDG
- 2004: not supported by BESII, PRD70, 012004
- **2005:** not supported by many high stats experiments
- 2006: removed from PDG
- **Note:** θ⁺(1540) is not supported by hadronic molecule model & chiral quark model by Huang, Zhang, Yu, Zou, PLB586(2004)69

While lacking expt constrains on models of compact pentaquarks, models for hadronic molecules are much better constrained.

Similarity for $\pi\pi$, π K and π N s-wave scattering phase shifts

Important role by t-channel ρ exchange for all these processes

D. Lohse, J.W. Durso, K. Holinde, J. Speth, Nucl.Phys.A516, 513 (1990) B.S.Zou, D.V.Bugg, Phys. Rev. D50, 591 (1994)

An interesting paper by T.Hyodo, D.Jido, A.Hosaka, PRL 97 (2006) 192002 "Exotic hadrons in s-wave chiral dynamics"

Similarity between $\pi\Sigma - \overline{KN}(I=0)$ and $\pi\pi - \overline{KK}(I=0)$ dipole structure for $\Lambda(1405) \leftarrow \sigma - f_0(980)$

VMD – ChPT unitarized \rightarrow N*(1535) as K Σ bound state Kaiser et al., PLB362(1995)23 2. P_c penta-quark states & its strange and beauty partners

A new direction to pin down pentaquark states :

Extension to hidden charm and beauty for baryons

- N*(1535) ssuud N*(4260) ccuud J.J.Wu, R.Molina, E.Oset, B.S.Zou. Phys.Rev.Lett. 105 (2010) 232001
- N*(11050) bbuud J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70
- $\Lambda^*(1405)$ qquds

From K Σ , $\overline{K}N \rightarrow \overline{D}\Sigma_c$, $\overline{D}_s\Lambda_c \rightarrow B\Sigma_b$, $B_s\Lambda_b$ bound states

"Prediction of narrow N* and Λ " resonances with hidden charm above 4 GeV", Wu, Molina, Oset, Zou, PRL105 (2010) 232001

 $\mathcal{L}_{VVV} = ig \langle V^{\mu} [V^{\nu}, \partial_{\mu} V_{\nu}] \rangle$ $\mathcal{L}_{PPV} = -ig \langle V^{\mu}[P, \partial_{\mu}P] \rangle$ $\mathcal{L}_{BBV} = g(\langle \bar{B}\gamma_{\mu} [V^{\mu}, B] \rangle + \langle \bar{B}\gamma_{\mu} B \rangle \langle V^{\mu} \rangle)$ $V_{ab(P_1B_1 \to P_2B_2)} = \frac{C_{ab}}{4f^2} (E_{P_1} + E_{P_2}),$ В $V_{ab(V_1B_1 \to V_2B_2)} = \frac{C_{ab}}{4f^2} (E_{V_1} + E_{V_2}) \vec{\epsilon}_1 \cdot \vec{\epsilon}_2,$ $T = [1 - VG]^{-1}V$ $T_{ab} = \frac{g_a g_b}{\sqrt{s} - 2p}$

J.J.Wu, R.Molina, E.Oset, B.S.Zou, PRL 105 (2010) 232001

	(I, S)	M	Г			Γ	i			JP
	(1/2, 0)			πN	ηN	$\eta' N$	$K\Sigma$		$\eta_c N$	
$N^* - DZ_c$		4261	56.9	3.8	8.1	3.9	17.0		23.4	1/2-
	(0, -1)			$\bar{K}N$	$\pi\Sigma$	$\eta \Lambda$	$\eta' \Lambda$	$K\Xi$	$\eta_c \Lambda$	1/4
Λ*		4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8	
		4394	43.3	0	10.6	7.1	3.3	5.8	16.3	

TABLE V: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $PB \rightarrow PB$, with units in MeV.

	(I, S)	M	Г			Г	i				
N*- $\overline{\mathbf{D}}*\Sigma_{o}^{(i)}$	(1/2, 0)	4419	47 9	ρN	ωN	$K^*\Sigma$			$J/\psi N$	-	
<u> </u>	(0, -1)	4412	41.5	5.2 K*N	$\rho\Sigma$	$\omega \Lambda$	$\phi \Lambda$	$K^*\Xi$	$J/\psi\Lambda$	1/2-, 3/2	
Λ^*		4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4		
		4544	36.6	0	8.8	9.1	0	5.0	13.8		

TABLE VI: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $VB \rightarrow VB$ with units in MeV.

Further studies support such hidden charm N*

W.L.Wang, F.Huang, Z.Y.Zhang, B.S.Zou, PRC84(2011)015203: Chiral quark model $\rightarrow \overline{D}\Sigma_c$ state ~ 4.3 GeV

Z.C.Yang, Z.F.Sun, J.He, X.Liu, S.L.Zhu, Chin. Phys. C36 (2012) 6 Schoedinger Equation method with π , η , ρ , ω , σ exchanges $\rightarrow \overline{D} \Sigma_c (1/2^-, 3/2^-) N^*$ state ~ 4360 - 4460 MeV

J.J.Wu, T.S.H.Lee, B.S.Zou, PRC85(2012)044002: **EBAC-DCC model** $\rightarrow \overline{D}\Sigma_{c} (1/2^{-}) \sim 4.3 \text{ GeV},$ $\overline{D}^{*}\Sigma_{c} (1/2^{-}, 3/2^{-}) \sim 4.4 - 4.5 \text{ GeV}$ -

C.W.Xiao, J.Nieves, E.Oset, PRD 88 (2013) 056012: Heavy quark spin symmetry \rightarrow 7 such N* molecules $\overline{D}\Sigma_{c} (1/2^{-}) \sim 4.26 \text{ GeV}, \quad \overline{D}\Sigma_{c}^{*} (3/2^{-}) \sim 4.33 \text{ GeV},$ $\overline{D}^{*}\Sigma_{c} (1/2^{-}, 3/2^{-}) \sim 4.41, 4.42 \text{ GeV},$ $\overline{D}^{*}\Sigma_{c}^{*} (1/2^{-}, 3/2^{-}, 5/2^{-}) \sim 4.48 - 4.49 \text{ GeV}$

M.Karliner, J.L.Rosner, PRL115(2015)122001: **Pion exchange** $\rightarrow \overline{D}^*\Sigma_c (1/2^-, 3/2^-) \sim 4.5 \text{ GeV}$

S.G.Yuan, K.W.Wei, J.He, H.S.Xu, B.S.Zou, "Study of ccqqq five quark system with three kinds of quark-quark hyperfine interaction," Eur. Phys. J. A48 (2012) 61

		v			•					-	~		
					1		J^P	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$
	C_{\cdot}	M	F	S	Ins	st.	$\frac{1}{2}^{+}$	4622	4456	4291	4138	4487	4396
J^P	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$\frac{1}{2}^{+}$	4636	4480	4297	4140	4501	4426
$\frac{1}{2}$	4273	4267	4084	3933	4209	4114	$\frac{1}{2}^{+}$	4645	4557	4363	4238	4520	4426
$\frac{2}{1-}$	4977	4969	4154	4012	4916	4191	$\frac{1}{2}^{+}$	4658	4581	4439	4320	4540	4470
2	4377	4303	4104	4015	4210	4151	$\frac{1}{2}^{+}$	4690	4593	4439	4367	4557	4482
$\frac{1}{2}$	4453	4377	4160	4119	4277	4204	$\frac{1}{2}^{+}$	4696	4632	4467	4377	4587	4490
$\frac{1}{2}^{-}$	4469	4471	4171	4136	4295	4207	$\frac{1}{2}^{+}$	4714	4654	4469	4404	4590	4517
$\frac{1}{2}$	4494	4541	4253	4156	4360	4272	$\frac{1}{2}^{+}$	4728	4676	4486	4489	4614	4518
$\frac{2}{1}$ -	4576		4263		4362		$\frac{1}{2}^{+}$	4737	4714	4492	4508	4616	4549
2	4010		4200		4002		$\frac{1}{2}^{+}$	4766	4720	4510	4515	4626	4566
2	4649		4278		4410		$\frac{3}{2}^{+}$	4623	4457	4291	4138	4487	4396
$\frac{3}{2}^{-}$	4431	4389	4154	4013	4216	4131	$\frac{3}{2}^{+}$	4638	4515	4297	4140	4501	4426
$\frac{3}{2}^{-}$	4503	4445	4171	4119	4295	4204	$\frac{3}{2}^{+}$	4680	4561	4363	4238	4520	4426
$\frac{2}{3}$ -	4549	4476	4263	4136	4362	4272	$\frac{3}{2}^{+}$	4692	4582	4439	4320	4540	4470
$\frac{2}{3}$ -	4577	4596	4978	4936	4416	4300	$\frac{3}{2}^{+}$	4695	4625	4439	4367	4557	4482
$\frac{2}{3}$	4011	4520	4210	4200	4410	4022	$\frac{5}{2}^{+}$	4705	4539	4297	4140	4501	4426
2	4629		4362		4461		$\frac{5}{2}^{+}$	4719	4649	4439	4320	4540	4470
$\frac{5}{2}$	4719	4616	4362	4236	4461	4322	$\frac{5}{2}^{+}$	4773	4689	4467	4367	4587	4482
							$\frac{5}{2}^{+}$	4793	4696	4486	4404	4615	4490
							$\frac{5}{2}^{+}$	4821	4710	4492	4515	4632	4517
							$\frac{7}{2}^{+}$	4945	4841	4638	4508	4698	4566
12^{-1}	+) _ [VI(3/)	2-):	130	~300	MeV	$\frac{7}{2}^{+}$	4955	4862	4671	4551	4712	4634
, _	/ 1		- , •	_			$\frac{7}{2}$ +	4974	4919	4705	4587	4765	4669

 $\frac{1}{2}$

5010

4759

4797

Observation of P_c states by LHCb

LHCb, Phys.Rev.Lett. 115 (2015) 072001 : **Observation of two N* from** $\Lambda_b^0 \to J/\psi K^- p$

LHCb

^{8 5.0} *m*_{J/ψp} [GeV]

5

4.8

LHCb

 $m_{Kp} > 2.00 \text{ GeV}$

4.6

LHCb, Phys.Rev.Lett. 122 (2019) 222001

State	M [MeV]	Γ [MeV]	(95% C.L.)	\mathcal{R} [%]
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$	(<27)	$0.30\pm 0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	(<49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3\pm0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	(<20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

Moriond QCD, Tomasz Skwarnicki, Mar 26, 2019

Comparison to numerical predictions

- Many theoretical predictions for $\Sigma_c^+ \overline{D}^{(*)0}$ published before 2015, some in quantitative agreement with the LHCb data
 - Wu,Molina,Oset,Zou, PRL105, 232001 (2010),
 - Wang,Huang,Zhang,Zou, PR C84, 015203 (2011),
 - Yang,Sun,He,Liu,Zhu, Chin. Phys. C36, 6 (2012),
 - Wu,Lee,Zou, PR C85 044002 (2012),
 - Karliner, Rosner, PRL 115, 122001 (2015)

ΔE – binding energy

Nucleon resonances with hidden charm in coupled-channels models

Jia-Jun Wu, T.-S. H. Lee, and B. S. Zou Phys. Rev. C **85**, 044002 – Published 17 April 2012

Example:

arXiv:1202.1036

TABLE III: The pole position $(M - i\Gamma/2)$ and "binding energy" $(\Delta E = E_{thr} - M)$ for different cut-off parameter Λ and spin-parity J^P . The threshold E_{thr} is 4320.79 MeV of $\bar{D}\Sigma_c$ in PB system and 4462.18 MeV of $\bar{D}^*\Sigma_c$ in VB system. The unit for the listed numbers is MeV.

			PB System		VB System			
	$J^p = \frac{1}{2}$	Λ	$M - i\Gamma/2$	ΔE	$M - i\Gamma/2$	ΔE		
10		650	0+10 M		$\Delta E(4457)$	7)-=	$2.5^{+4.3}_{-4.1}$	MeV
431	[2] =	= ₈₀₀ -	$8_{-6.8}^{+1.0}$ IVIE	₽V_	4462.178 - 0.002i	0.002	1.12.13	
		1200	4318.964 - 0.362i	1.826	4459.513 - 0.417i	2.667		
		1500	4314.531 - 1.448i	6.259	4454.088 - 1.662i	8.092		
		2000	4301.115 - 5.835i	19.68	4438.277 - 7.115i	23.90		
	$J^p = \frac{3}{2}$	-			h			
		650		-	-	-		
		800	~	-	4462.178 - 0.002i	0.002		
		1200	-	-	4459.507 - 0.420i	2.673		
		1500	-		4454.057 - 1.681i	8.123		
		2000	-	-	4438.039 - 7.268i	23.14		
22				٨	F(1110)	1	0 = +4.9	

 $\Lambda~$ - cut off on exchanged meson mass.

 $\Delta E(4440) = 19.5^{+4.9}_{-4.3}$ MeV

15

Progress on P_c states after LHCb observation

Thresholds $\overline{D}\Sigma_c^*$ (4383MeV), $\overline{D}^*\Sigma_c$ (4460MeV), $p\chi_{c1}$ (4449MeV)

1) $\overline{\mathbf{D}}\Sigma_{\mathbf{c}}^{*}$, $\overline{\mathbf{D}}^{*}\Sigma_{\mathbf{c}}$, $\overline{\mathbf{D}}^{*}\Sigma_{\mathbf{c}}^{*}$ molecular states

R.Chen, X.Liu, X.Q.Li, S.L.Zhu, PRL115 (2015) 132002; L.Roca, J.Nieves, E.Oset, PRD92 (2015) 094003; J.He, PLB 753 (2016)547;

2) diquark cu & triquark c(ud) states

L.Maiani, A.D.Polosa, V. Riquer, PLB749 (2015) 289; R.Lebed, PLB749 (2015) 454; G.N.Li, M.He, X.G.He, JHEP 1512 (2015) 128; R.Zhu, C.F.Qiao, PLB756 (2016) 259;

3) Kinematic triangle-singularity

F.K.Guo, Ulf-G.Meißner, W.Wang, Z.Yang, PRD92 (2015) 071502 J/X.H.Liu, Q.Wang, Q.Zhao, PLB757 (2016) 231 χ_{cJ}

For comprehensive reviews, cf.:

H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Phys.Rept. 639 (2016) 1 F.K.Guo, C.Hanhart, U.Meissner, Q.Wang, Q.Zhao, B.S.Zou, RMP 90 (2018)015004 Y.R.Liu, H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Prog.Part.Nucl.Phys. 107 (2019) 237

Disentangling $D\Sigma_c^*$ / $D^*\Sigma_c$ nature of P_c^+ states from their decays Y.H.Lin, C.W.Shen, F.K.Guo, B.S.Zou, PRD95(2017)114017

One pion exchange is very important !

 $\overline{D}\Sigma_c^* \& \overline{D}^*\Sigma_c^*$ are much broader than $\overline{D}\Sigma_c^* \& \overline{D}^*\Sigma_c$ states

Partial decay widths of $P_c^+(4380)$ & $P_c^+(4450)$

		Widths	s (MeV)	
	$P_c(4$	380)	$P_c(4$	450)
Mode	$\bar{D}\Sigma_c^*(\tfrac{3-}{2})$	$\bar{D}^*\Sigma_c(\tfrac{3-}{2})$	$\bar{D}^*\Sigma_c(\tfrac{3-}{2})$	$\bar{D}^*\Sigma_c(\tfrac{5+}{2})$
$\bar{D}^*\Lambda_c$	131.3 🗸	35.3 √	72.3√	20.5 🗸
$J/\psi p$	3.8	16.6	16.3	4.0
$\bar{D}\Lambda_c$	1.2	17.0 🗸	41.4 🗸	18.8 🗸
πN	0.06	0.07	0.07	0.2
$\chi_{c0}p$	0.9	0.004	0.02	0.002
$\eta_c p$	0.2	0.09	0.1	0.04
ρN	1.4	0.15	0.14	0.3
ωp	5.3	0.6	0.5	0.3
$\bar{D}\Sigma_c$	0.01	0.1	1.2	0.8
$\bar{D}\Sigma_c^*$			7.7	1.4
$\bar{D}\Lambda_c\pi$	11.6			
Total	144.3	69.9	139.8	46.4

It is very important to study $P_c \rightarrow \overline{D} * \Lambda_c \& \overline{D} \Lambda_c !$

Strange & beauty partners of P_c states

Strangeness partners of P_c states: N*(1875) & N*(2080) $K\Sigma^* \sim 1880$ K* $\Sigma \sim 2086$

Strangeness partners of P_c states at BES ?N*(1875)N*(2080)N*(2270)K Σ * ~1880K* Σ ~ 2086K* Σ * ~ 2280

Contents lists available at SciVerse ScienceDirect

Physics Letters B

Prediction of super-heavy N^* and Λ^* resonances with hidden beauty Jia-Jun Wu^{a,*}, Lu Zhao^a, B.S. Zou^{a,b}

M (MeV)	Г (MeV)	Γ_i (Me)	/)				
11052	1.38	πN 0.10	ηN 0.21	η′Ν 0.11	<i>KΣ</i> 0.42	$\eta_b N$ 0.52	1/2-
11100	1.33	ρΝ 0.09	ωN 0.30	<i>K</i> * <i>Σ</i> 0.39	ΥΝ 0.51		1/2-, 3/2-

$\bar{D}\Lambda_{c} - \bar{D}\Sigma_{c}$ and $B\Lambda_{b} - B\Sigma_{b}$ dynamical coupled channel study C.W.Shen, Roechen, Meissner, Zou, CPC42(2018) 023106

More pentaquarks with hidden beauty than with hidden charm

Decay behavior of P_s & P_b pentaquark states

Y.H.Lin, C.W.Shen, B.S.Zou, NPA980(2018)21

		Widths (MeV)	
Mode	$\frac{J^P}{N(1875) K\Sigma^*}$	$3/2^-$ N(2080) K* Σ	$\frac{J^P = 1/2^-}{N(2080) K^* \Sigma}$
$N\sigma(500)$	2.6	0.05	0.3
πN	3.8	0.2	22.7
ρN	2.3	3.8	6.1
$\frac{\omega p}{K\Sigma}$	0.03	11.5	9.1
$K\Lambda$	0.7	3.7	19.3
ηp	0.6	0.4	1.8
$\pi\Delta K^*\Lambda$	201.4	82.6 2.4	46.9 7 9
ϕp	-	19.2	27.0
$K\Sigma^*$	-	7.3	1.3
$K\Lambda(1520)$ $K\Lambda(1405)$	-	0.1	1.3
$K\pi\Lambda$	10.1	-	-
$K\pi\Sigma$	-	41.3	46.1
	228.2	181.7	216.8

Guidance for P_s & P_b search

Decay behaviors of possible $\Lambda_{c\bar{c}}$ states in hadronic molecule pictures

C.W.Shen, J.J.Wu, B.S.Zou PRD100 (2019) 056006

Guidance for P_{sc} search

3. 1⁻⁺ Tetra-quark states

N.Tornqvist, ZPC61(1994)525 $\rightarrow \chi_{c1}(3870)$ as 1⁺ DD* state Zhang, Chiang, Shen, Zou, PRD74(2006)014013 \rightarrow 0⁺ DD, BB, DK states Guo, Shen, Chiang, Ping, Zou, PLB641(2006)278 \rightarrow D_{s1}(2317) as DK 0⁺ state G.J.Ding, PRD79(2009)014001 \rightarrow Y(4260) as 1⁻⁻ $\overline{D}D_1^*$ state F.Close et al., PRD81(2010)074033 \rightarrow a 1⁻⁺ partner of Y(4260) PKU&Lanzhou, EPJC70(2010)183 \rightarrow both 1⁻⁻ & 1⁻⁺ DD₁* states Li, Wang, Dong, Zhang, CTP63(2015)63 \rightarrow both 1⁻⁻ & 1⁻⁺ DD₁* states Dong, Zou, Arxiv:1910.14455 \rightarrow both 1⁻⁻ & 1⁻⁺ DD₁* states ~ 4240 MeV

L.Liu et al., JHEP 1207(2012)126 → 1⁻⁺state ~ 4217 MeV Y.Ma et al., arXiv:1910.09819 → 1⁻⁺state ~ 4309 MeV

 $\pi_1(1400)$ as a b₁ π state ?

4. Prospects

my favorite strategy for hadron spectroscopy:

 ccuud & ccuds → sss - qqsss → cqq - qqcqq

 → hyperons → light baryons

charm & beauty meson

charm & beauty baryon

理论物理专款20周年纪念文集(2013)

未雨绸缪议发展 科学规划绘蓝图

——理论物理专款中国加速器高能物理发展战略理论研讨进展撮要

赵光达¹,邹冰松²,乔从丰³

在强子结构物理方面,夸克和胶子如何构成强子是粒子物理标准模型没有完 全解决的最大难题。随着我国 BEPC 和 BEPCII 的相继建成及其实验的成功进行, BES 已经在粲物理和轻强子谱研究方面取得了一批具有世界领先水平的创新性物 理成果,积累了丰富的经验,在国际上占有了重要的一席之地。我国不应放弃这一 重要前沿阵地,可以考虑建造更高亮度的超级 、粲工厂,或先在目前 BEPCII 的基 础上改造增加极化束实验。与强子谱实验互补,探索强子结构的另一主要途径是 核子结构函数的测量,在这方面,电子-离子对撞机(EIC)是一个可以考虑的选择。

预祝 STCF / EicC 建成 → 赵老师 90 大寿 攻克强子物理最大难题 → 赵老师 100 大寿