

Recent results from Belle and status of Belle II

Chengping Shen

shencp@fudan.edu.cn

> Observation of Z_c(2930)⁰ and Z_c(2930)[±]
> Measurement of Ξ_c absolute BRs
> Measurement of BRs for B⁻ → Ā_c⁻Ξ^{*0}_c
> A charmoniumlike state in e⁺e⁻ →DsDs1(2536)
> Status of Belle II

Although Belle stopped data taking more than ten years ago and BelleII has already started data taking, Belle is still producing many excited results.

Belle experiment and data samples

$\Xi_c(2930)^0 \quad in \ B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$

- Belle reported a structure, called Y(4630), in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution in $e^+e^- \rightarrow \gamma_{ISR} \Lambda_c^+ \overline{\Lambda}_c^-$ PRL 101, 172001
- BarBar once studied $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda_c^-}$ and found two small peaks in $M_{\Lambda_c^+ \overline{\Lambda_c^-}}$ spectrum and a vague structure named Ξ_c (2930) is seen in the distribution of $M_{K \Lambda_c}$. Larger data is needed to verify them. PRD 77, 031101
- Also, some theory explained that Y(4660) has a large partial decay width to $\Lambda_c^+ \overline{\Lambda}_c^-$ and it's spin partner Y(4616) is predicted. PRD 82, 094008; PRL102, 242004

About Y(4630/4660), please see below for our latest results in $e^+e^- \rightarrow DsDs1(2536)$

$\Xi_c(2930)^0$ in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$

tion for experimental resolution, we obtain $m = 2931 \pm 3(\text{stat}) \pm 5(\text{syst}) \text{ MeV}/c^2$ and $\Gamma = 36 \pm 7(\text{stat}) \pm 11(\text{syst})$ MeV. We do not see any such structure in the m_{ES} sideband region. This description is in good agreement with the data (χ^2 probability of 22%) and could be interpreted as a single Ξ_c^0 resonance with those parameters, though a more complicated explanation (e.g. two narrow resonances in close proximity) cannot be excluded.

Observation of $\mathcal{Z}_{c}(2930)^{0}$ in $B^{+} \rightarrow K^{+}\Lambda_{c}^{+}\overline{\Lambda}_{c}^{-}$ at Belle Y.B.Li, C.P.Shen et al (Belle) Eur. Phys. J. C78, 252 (2018)

Clear confirmation for the BaBar claim, PRD77,031101(2008) and much more precise M=2928.9 \pm 3.0 +0.8/-12.0 MeV, Γ =19.5 \pm 8.4 +5.4/-7.9 MeV

• $\Xi_c(2930)^0 = csd$ is the first charmed-strange baryon established in B decay.

Search for Y(4660) and its spin part in Y.B.Li, C.P.Shen et al (Belle) $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ at Belle Eur. Phys. J. C78, 252 (2018)

- No Y(4660) and its spin partner Y_{η} were observed in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution
- 90% C.L. upper limits of $B^+ \to K^+ Y(4660) \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ and $B^+ \to K^+ Y_\eta \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ are 1.2×10^{-4} and 2.0×10^{-4} .

Evidence of charged $\mathcal{Z}_c(2930)$ in $B^0 \to K^0 \Lambda_c^+ \overline{\Lambda}_c^-$

- Based on full $\Upsilon(4S)$ data set (772 M $B\overline{B}$ pairs) at Belle
- Three Λ_c decay channels: $\Lambda_c^+ \rightarrow pK^-\pi^+, \Lambda_c^+ \rightarrow pK_s(\pi^+\pi^-) \text{ and } \Lambda_c^+ \rightarrow \Lambda(p\pi^-)\pi^+.$
- B candidates extracted via 2D fit to M_{bc} and ΔM_B

• Quite clear $\Lambda_c^+ \bar{\Lambda}_c^-$ signals and B^0 signals.

- $N^{\text{sig}} = 34.9 \pm 6.6$ with a statistical signal significance above 8.3σ
- $\mathcal{B}(\bar{B}^0 \to \bar{K}^0 \Lambda_c^+ \bar{\Lambda}_c^-) = [3.99 \pm 0.76 (\text{stat.}) \pm 0.51 (\text{syst.})] \times 10^{-4}$

Evidence of charged $\mathcal{Z}_c(2930)$ in $B^0 \to K^0 \Lambda_c^+ \overline{\Lambda}_c^-$

• Charged $\mathcal{I}_c(2930)$ extracted by fitting $M_{K_s^0\Lambda_c}$

- $N(\Xi_c^{\pm}(2930))=21.2\pm4.6$, stat. significance 4.1σ
- $M(\Xi_c^{\pm}(2930))=2942.3\pm4.4\pm1.5 \text{ MeV/c}^2$
- $\Gamma (\Xi_c^{\pm}(2930)) = 14.8 \pm 8.8 \pm 2.5 \text{ MeV}$

Y.B.Li, C.P.Shen et al (Belle) EPJC 78, 928 (2018)_

After this measurement, $* \rightarrow **$

Measurements of absolute Brs of Ξ_c^0

- Weak decays of charmed hadrons play an unique role in the study of strong interaction; the charmed-baryon sector also offers an unique and excellent laboratory for testing heavyquark symmetry and light-quark chiral symmetry.
- For the charmed baryons of the SU(3) anti-triplet, only Λ_c absolute Brs were measured by Belle [PRL113,042002(2014), first time] and BESIII [PRL116,052001(2016)]
- Since E⁰_c [PRL62,863(1989)] and E⁺_c [PLB122,455 (1983)] were discovered ~30 years ago, no absolute Brs could be measured.
- For Ξ_c^0 , the Brs are all measured with ratios to the $\Xi^-\pi^+$, the so called reference mode.

 Ξ_c^+

udc

 $\Xi_c^{\hat{0}}_{dsc}$

Measurements of absolute Brs of Ξ_c^0

- Theory: $B(\Xi_c^0 \to \Xi^- \pi^+) \sim 1.12\%$ or 0.74% [PRD48, 4188 (1993)], (2.24±0.34)% [JHEP03, 66(2018)], (1.91±0.17)% [1811.07265]
- The $B(\Xi_c^0 \to \Lambda K^- \pi^+) / B(\Xi_c^0 \to \Xi^- \pi^+) = 1.07 \pm 0.12 \pm 0.07$ and $B(\Xi_c^0 \to p K^- K^- \pi^+) / B(\Xi_c^0 \to \Xi^- \pi^+) = 0.33 \pm 0.03 \pm 0.03 \pm 0.03$ [PLB 605,237]
- $\Xi_c^0 \rightarrow p K^- K^- \pi^+$ plays a fundamental role in lots of bottom baryons study at LHCb .
- How to measure Ξ_c^0 absolute Brs ? Model Independent!

$$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)},$$
$$\mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)}.$$
$$\mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)}$$

- For inclusive $B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 \rightarrow anything$, never measured before.
- For exclusive $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Xi^- \pi^+)$; $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Lambda K^- \pi^+)$, measured by Belle and BaBar with large **errors**.

Measurements of Br of $B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 \rightarrow anything$

- The $\overline{\Lambda_c}$ reconstructed via its $\overline{p}K^+\pi^-$ and $\overline{p}K_s^0$ decays
- A tagged B meson candidate, B_{tag}^+ , is reconstructed using a neural network based on the full hadron-reconstruction algorithm

• An unbinned maximum likelihood fit: $N(\Xi_c^0)=40.9 \pm 9.0, 5.5\sigma(\text{stat.})$

• $B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0, \Xi_c^0 \rightarrow anything) = (9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$ for the first time Y.B.Li, C.P.Shen et al. (Belle

Y.B.Li, C.P.Shen et al (Belle) PRL122, 082001 (2019)

Measurements of absolute Brs of Ξ_c^0

Summary of the measured branching fractions and the ratios of Ξ_c^0 decays

Y.B.Li, C.P.Shen et al (Belle) PRL122, 082001 (2019)

BF	Result	Theory	PDG
$\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0)$	$(9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$	$\sim 10^{-3}$	
$\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$(1.71\pm 0.28\pm 0.15)\times 10^{-5}$		$(2.4\pm 0.9)\times 10^{-5}$
$\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Lambda \mathrm{K}^- \pi^+)$	$(1.11\pm 0.26\pm 0.10)\times 10^{-5}$		$(2.1\pm 0.9)\times 10^{-5}$
$\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+)$	$(5.47 \pm 1.78 \pm 0.57) \times 10^{-6}$		
$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$(1.80 \pm 0.50 \pm 0.14)\%$	1.12% or 0.74%	
$\mathcal{B}(\Xi_c^0 o \Lambda \mathrm{K}^- \pi^+)$	$(1.17\pm 0.37\pm 0.09)\%$		
$\mathcal{B}(\Xi_c^0 o pK^-K^-\pi^+)$	$(0.58\pm 0.23\pm 0.05)\%$		
$\mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+) / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$0.65\pm 0.18\pm 0.04$		$\textbf{1.07} \pm \textbf{0.14}$
$\mathcal{B}(\Xi_c^0 o pK^-K^-\pi^+)/\mathcal{B}(\Xi_c^0 o \Xi^-\pi^+)$	$0.32 \pm 0.12 \pm 0.07$		0.34 ± 0.04

- We have performed an analysis of $B^- \to \overline{\Lambda}_c^- \Xi_c^0$ inclusively and exclusively
- First model-independent measurement of absolute Brs of E⁰_c decays
- The branching fraction $B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0)$ is measured for the first time
- The $B(\Xi_c^0 \to \Xi^- \pi^+)$ can be used to determine the BR of other Ξ_c^0 decays.

Measurements of absolute Brs of Ξ_c^+

- The decays of charmed baryons in experiment are needed to extract the non-perturbative contribution thus important to constrain phenomenological models of strong interaction.
- For the SU(3) anti-triplet charmed baryons the branching fractions of Λ_c^+ [PRL 113,042003(2014); PRL 116,052001(2016)] and Ξ_c^0 [PRL 122,082001(2019)] has been measured.
- The Brs of remaining Ξ_c^+ are all measured with ratio to the $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$

• The comparison of Ξ_c^+ decays with those of Λ_c^+ and $\exists and \Xi_c^0$ can also provide an important test of SU(3) flavor symmetry.

 $\Xi_c^+ \rightarrow p \ K^- \ \pi^+$ is a particularly important decay mode as it is the one most often used to reconstruct Ξ_c^+ candidates at hadron collider experiments, such as LHCb. Theory predicts the B($\Xi_c^+ \rightarrow p \ K^- \ \pi^+$)=(2.2±0.8)% [EPJC 78, 224 (2018); Chin. Phys. C 42, 051001 (2018)].

Measurement of Ξ_c^+ **absolute BRs**

Measurement $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+)$ with $\Xi_c^+ \to anythings$

- reconstruct $\overline{\Lambda}_c^-$ via $\overline{p}K^+\pi^-$ decay mode Y.B.Li, C.P.Shen et al (Belle) PRD 100, 031101 (2019)
- tag a B^0 with neural network based Full-Reconstruction algorithm.
- An unbinned maximum likelihood fit: $N(\Xi_c^+) = 18.8 \pm 6.8$
- $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+) = [1.16 \pm 0.42(stat.) \pm 0.15(syst.)] \times 10^{-3}$

Measurement of Ξ_c^+ absolute BRs Measurement $\mathcal{B}(\bar{B}^0 \to \bar{\Lambda}_c^- \Xi_c^+)$ with $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ or pK⁻ π^+

Y. B. Li. C. P. Shen et al (Belle) PRD 100, 031101 (2019)

Measurement of Ξ_c^+ **absolute BRs**

Y. B. Li. C. P. Shen et al (Belle) PRD 100, 031101 (2019)

BF	Result	Theory	PDG
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}_c^- \Xi_c^+)$	$(1.16\pm0.42\pm0.15)\times10^{-3}$	$\sim 10^{-3}$	
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c \Xi^+_c))\mathcal{B}(\Xi^+_c \to \Xi^- \pi^+ \pi^+)$	$(3.32\pm 0.74\pm 0.33)\times 10^{-5}$		$(1.8 \pm 1.8) imes 10^{-5}$
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c \Xi^+_c) \mathcal{B}(\Xi^+_c \to pK^-\pi^+)$	$(5.27 \pm 1.51 \pm 0.69) \times 10^{-5}$		
$\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	$({\bf 2.86 \pm 1.21 \pm 0.38})\%$	$(1.47 \pm 0.84)\%$	
$\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$	$(0.45\pm 0.21\pm 0.07)\%$	$(2.2 \pm 0.8)\%$	
$\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)/\mathcal{B}(\Xi_c^+ \to \Xi^-\pi^+\pi^+)$	$0.16\pm 0.06\pm 0.02$		0.21 ± 0.04

- First model –independent $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+)$ measurement
- $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$ can be used to determine the BR of other Ξ_c^+ decay

Measurements of the Branching Fractions $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^{\prime 0})$, $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c(2645)^0)$ and $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c(2790)^0)$ at Belle

Measurements of the Branching Fractions $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^{\prime 0})$, $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c (2645)^0)$ and $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c (2790)^0)$ at Belle

- Recently, the absolute branching fractions of the two Ξ_c ground states, Ξ_c^0 and Ξ_c^+ , have been measured by Belle.
- They first measured the branching fraction for B[−] → Λ[−]_c Ξ⁰_c using a missing-mass technique (inclusive process); then they measured the product branching fraction for $(B^- → \Lambda^-_c \Xi^0_c)(\Xi^0_c → \Xi^- \pi^+)$ (exclusive process). The Ξ⁰_c absolute branching fractions can be obtained by dividing the result of exclusive process by the result of inclusive process .
- Solution Now a nature question is : in the inclusive process, *i.e.* Λ_c recoil side, they only focused on the Ξ_c^0 signal region, may we observe excited Ξ_c^0 states in the higher recoil mass region.
- In this analysis, we checked the higher recoil mass region, *i.e.* the excited Ξ_c^0 states. We measured the branching fractions of the inclusive process, but we didn't observe the signal in the exclusive process.
 - Y. B. Li et al. (Belle Collaboration), Phys. Rev. Lett 122, 082001 (2019).
 - Y. B. Li et al. (Belle Collaboration), Phys. Rev. D 100, 031101(R) (2019).

Measurements of the Branching Fractions $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^{\prime 0})$, $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c(2645)^0)$ and $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c(2790)^0)$ at Belle

Figure: ΔE distribution and the scatter plot of $M_{\rm bc}$ of $B_{\rm tag}^+$ versus $M_{\bar{\Lambda}_c^-}$ of signal side in Ξ_c^{*0} signal region, *i.e.*, 2.5 GeV/ $c^2 < M_{B_{\rm tag}^+\bar{\Lambda}_c^-}^{\rm rec} < 2.86 \text{ GeV}/c^2$ from real data.

- We take $|\Delta E| < 0.04$ GeV (~ 3σ) as ΔE signal region.
- 2 The normalized contribution from M_{bc} and $M_{\bar{h}_c}$ sidebands is estimated using the half the number of events in blue dashed boxes, minus one-fourth the number of events in red dashed boxes.

Measurements of the Branching Fractions $\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c'^0)$, $\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c (2645)^0)$ and $\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c (2790)^0)$ at Belle

The empty space between the fitted **The** background level and the normalized sidebands histogram is the contribution from other multi-body $B^- \rightarrow \overline{\Lambda}_c^- + anything$ decays.

Since in the fit to the data the statistical significances of $\Xi_c^{\prime 0}$ and $\Xi_c (2645)^0$ are less than 3σ , upper limits at 90% credibility level (C.L.) on the numbers of $\Xi_c^{\prime 0}$ and $\Xi_c (2645)^0$ are determined.

	$N_{\rm sig}$	$\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^{*0})$ [Upper Limit]	Significance (σ)
$\Xi_c^{\prime 0}$	18 ± 10	$(3.4 \pm 2.0 \pm 0.4) \times 10^{-4} \ [6.5 \times 10^{-4}]$	1.7
$\Xi_c(2645)^0$	24 ± 13	$(4.4 \pm 2.4 \pm 0.5) \times 10^{-4} \ [7.9 \times 10^{-4}]$	1.9
$\Xi_c(2790)^0$	60 ± 22	$(1.1 \pm 0.4 \pm 0.2) \times 10^{-3}$	3.1

NEW

The Y states

Belle: PRL99,142002, 670/fb BaBar: PRD89, 111103, 520/fb

Y(4630)=Y(4660)? Are there other decay modes?

 $e^+e^- \rightarrow \gamma_{ISR}D_s^+D_{s1}(2536)^- (\rightarrow \overline{D}^{*0}K^-/D^{*-}K_s^0)+c.c.$

\sqrt{s} (GeV)	Luminosity (fb ⁻¹)	
10.52	89.5±1.3	
10.58	711±10	
10.867	121.4±1.7	
Total	921.9 <u>+</u> 12.9	

- For $\overline{D}{}^{*0}K^-$ mode, full reconstruction of the $\gamma_{ISR},\,D_s^+$, and K^-
- D_s : K+K- π^+ , K_sK+, K+K- $\pi^+\pi^0$, K_sK+ π^0 , $\eta\pi^+$, $\eta'\pi^+$
- and require $D_s^+K^-\gamma_{ISR}$ recoil mass ~ $\overline{D}{}^{*0}$ mass

$$M_{\rm rec}(\gamma_{\rm ISR}D_{\rm s}^{+}{\rm K}^{-}) = \sqrt{({\rm E}_{\rm c.m.}^{*} - {\rm E}_{\gamma_{\rm ISR}D_{\rm s}^{+}{\rm K}^{-}}^{*})^{2} - \left({\rm p}_{\gamma_{\rm ISR}D_{\rm s}^{+}{\rm K}^{-}}^{*}\right)^{2}}$$

 To improve mass resolution, M_{rec}(γ_{ISR}D⁺_sK⁻) is constrained to nominal mass of D
^{*0}: the resolution of M_{rec}(γ_{ISR}) is drastically improved (~180 → ~ 5 MeV).

For $D^{*-}K_{S}^{0}$ mode, full reconstruction of the γ_{ISR} , D_{s}^{+} , and K_{S}^{0} , and do similar selection

S.Jia, C.P.Shen, C.Z.Yuan, X.L.Wang et al.(Belle): arXiv:1911.00671

$M_{rec}(\gamma_{ISR}D_s^+K^-/K_S^0)$ and $M_{rec}(\gamma_{ISR}D_s^+)$

- M_{rec}(γ_{ISR}D⁺_sK⁻/K⁰_s) distribution is making before applying the D
 ^{*0}/D^{*-} mass constraint.
- Due to the poor mass resolution, the \overline{D}^{*0}/D^{*-} signal is very wide.
- The yellow histogram shows the normalized $D_{s1}(2536)^-$ mass sidebands (see below).

- $M_{rec}(\gamma_{ISR}D_s^+)$ distribution is making after applying the \overline{D}^{*0}/D^{*-} mass constraint.
- The yellow histogram shows the normalized D⁺_s mass sidebands.
- The fit yields $275\pm32 D_{s1}(2536)^-$ signal events with the statistical significance of 8.0σ .

final mass spectrum $M(D_s^+D_{s1}(2536)^-)$

An unbinned simultaneous likelihood fit:

- signal: BW convolved with a Gaussian function, then multiplied by an efficiency function
- $D_{s1}(2536)^-$ mass sidebands: threshold function
- $e^+e^- \rightarrow D_s^{*+}D_{s1}(2536)^-$ background: threshold function
- non-resonant: two-body phase space

$$\begin{split} &\mathsf{M}{=}(4625.\,9^{+6.2}_{-6.0}(stat.\,)\pm0.\,4(syst.\,)\;\mathsf{MeV/c^2}\\ &\varGamma=(49.\,8^{+13.9}_{-11.5}(stat.\,)\pm4.\,0(syst.\,)\;\mathsf{MeV}\\ &\Gamma_{ee}\times\mathcal{B}(Y\to\mathsf{D}_s^+\mathsf{D}_{s1}(2536)^-)\times\mathcal{B}(\mathsf{D}_{s1}\bigl(2536)^-\to\overline{D}^{*0}\mathsf{K}^-\bigr){=}\\ &\quad (14.\,3^{+2.8}_{-2.6}(stat.\,)\pm1.\,5(syst.\,)\;\mathsf{eV} \end{split}$$

Possible background from $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$, where the photon from the D_s^{*+} remains undetected is studied in data, no obvious structure is observed in $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$.

Cross section

The product of $e^+e^- \rightarrow D_s^+D_{s1}(2536)^- + c.c.$ cross section and B(D_{s1}(2536)⁻ $\rightarrow \overline{D}^{*0}K^-$).

The peak value of the $\sigma \times B$ at $M(D_s^+D_{s1}(2536)^-) \sim 4.63 \text{ GeV}$ is $(0.18\pm0.06) \text{ nb.}$ If $B(D_{s1}(2536)^- \rightarrow \overline{D}^{*0}K^-)=50\%$ \rightarrow Peak cross section ~ 0.4 nb

S.Jia, C.P.Shen, C.Z.Yuan, X.L.Wang et al.(Belle): arXiv:1911.00671

Y(4630)=Y(4660)?

A combined fit to Belle data by X.Y.Gao, S.Jia, C.P.Shen [preliminary]

Number of data points : 171 Chi^2 = 140.38

What is Y(4660)?

- Charmonium?
- Molecule [f₀(980) ψ ', $\overline{\Lambda}_{c}\Lambda_{c}$]?
- Hadron-charmonium?
- Tetraquark state?
- Hybrid?

.

Experimental measurements:

Y(4660) →

- $> D_s * D_{s0}(2317)$
- $> D_{s}D_{s1}(2460)$
- $> D_s * D_{s1}(2460)$
- $> D_{s}D_{s2}(2573)$

May these rates be estimated according to $D_sD_{s1}(2536)$?

at Belle with ISR; and at BESIII with data to be taken in 2019-2020 running year (E_{cm} =4.62, 4.64, 4.66, 4.68, 4.70 GeV, 500 pb⁻¹ at each energy)

Why does Y(4660) couple to ss strongly? Why does Y(4660) couple to charmed baryon strongly?

Belle II and LHCb: competition and complementarity

Property	LHCb	Belle II
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1
$\int L dt$ (fb ⁻¹) by ~2027	~25	~50,000
Background level	High	Low
Typical efficiency	Low	High
π^0 , K_S efficiency	Low	High
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Good
Collision spot size	Large	Tiny
Heavy bottom hadrons	B_s, B_c, b -baryons	Partly B _s
au physics capability	Limited	Excellent
B-flavor tagging efficiency	3.5 - 6%	36%

Start-up schedule

First collisions, 26 April, 2018

- Collected ~ 5 fb⁻¹ \circ 0.5% of Belle
- Mostly at $L \sim 0.5 \times 10^{34} \text{ cm}^2 \text{s}^{-1}$ $\circ 25\%$ of KEKB
- Reached $L \sim 1.2 \times 10^{34} \text{ cm}^2 \text{s}^{-1}$
 - With high background
 - Ongoing work on background

The first Belle II collaboration paper has been submitted to arXiv and "Chinese Physics C"

(https://arxiv.org/abs/1910.05365)

Measurement of the integrated luminosity of the Phase 2 data of the Belle II experiment

Belle II Collaboration: F. Abudinén, I. Adachi, P. Ahlburg, H. Aihara, N. Akopov, A. Aloisio, L. Andricek, N. Anh Ky, D. M. Asner, H. Atmacan, T. Aushev, V.
Aushev, K. Azmi, V. Babu, S. Baehr, S. Bahinipati, A. M. Bakich, P. Bambade, Sw. Banerjee, S. Bansal, V. Bansal, M. Barrett, J. Baudot, A. Beaulieu, J. Becker.
P. K. Behera, J. V. Bennett, E. Bernieri, F. U. Bernlochner, M. Bertemes, M. Bessner, S. Bettarini, V. Bhardwaj, F. Bianchi, T. Bilka, S. Bilokin, D. Biswas, G.
Bonvicini, A. Bozek, M. Bračko, P. Branchini, N. Braun, T. E. Browder, A. Budano, S. Bussino, M. Campajola, L. Cao, G. Casarosa, C. Cecchi, D. Červenkov,
M.-C. Chang, P. Chang, R. Cheaib, V. Chekelian, Y. Q. Chen, Y.-T. Chen, B. G. Cheon, K. Chilikin, H.-E. Cho, K. Cho, S. Choudhury, D. Cinabro, L. Corona, L.
M. Cremaldi, S. Cunliffe, T. Czank, F. Dattola, E. De La Cruz-Burelo, G. De Nardo, M. De Nuccio, G. De Pietro, R. de Sangro, M. Destefanis, S. Dey, A. De
Yta-Hernandez, F. Di Capua, S. Di Carlo, J. Dingfelder, Z. Doležal, I. Domínguez Jiménez, T. V. Dong, K. Dort, S. Dubey, S. Duell, S. Eidelman, M.
Eliachevitch, T. Ferber, D. Ferlewicz, G. Finocchiaro, S. Fiore, A. Fodor, F. Forti, A. Frey, B. G. Fulsom, M. Gabriel, E. Ganiev, M. Garcia-Hernandez, A.
Garmash, V. Gaur et al. (299 additional authors not shown)

(Submitted on 11 Oct 2019)

From April to July 2018, a data sample at the peak energy of the $\Upsilon(4S)$ resonance was collected with the Belle~II detector at the SuperKEKB electron-positron collider. This is the first data sample of the Belle~II experiment. Using Bhabha scattering events, we measure the integrated luminosity of the data sample to be $(496.7 \pm 0.3 \pm 3.5)$ ~pb⁻¹, where the first uncertainty is statistical and the second is systematic. A measurement with digamma events is performed as a cross-check, and the obtained result is in agreement with the nominal result. This work provides a basis for future luminosity measurements at Belle~II.

Comments: 12 pages, 2 figures, the first Belle II Collaboration paper Subjects: High Energy Physics - Experiment (hep-ex)

X.Y.Zhou, S.X.Li, C.P.Shen et al (Belle II)

Quick review of Phase-3 2019 Spring

- Phase-3 2019 Spring run started from 11th, March, and ended 1st, July, 2019.
- Aims of Phase-3 2019 Spring:
 - Starting full-scale physics run with complete VXD in Belle II.
 - Accelerator and collision tunings with lower β^* for higher luminosity.

Goals for Summer 2020 (200 fb^{-1})

- → Exclusive V_{ub} from $B \to \pi l \nu$, V_{cb} from $B \to D^* l \nu$, rediscovery of $B \to D^* \tau \nu$;
- → Rediscovery of b → s l⁺l⁻ and of inclusive b → s γ;
- → Publication quality measurement of TD CP asymmetry in $B^{\circ} \rightarrow J/\psi K^{\circ}$;
- → Rediscovery of $B^{\circ} \rightarrow \pi^{\circ}\pi^{\circ};$

- → Resolution and systematics on $D^{\circ} \rightarrow K_{s} \pi^{+} \pi^{-}$ Dalitz Plot; Luminosity goal for ICHEP 2020 is 200/fb
- → First look at ϕ_3 with GLW and (Belle + Belle II) GGSZ;
- → Z charged states, search for Y states in ISR;
- Analysis of $\tau \rightarrow h \omega \nu$ and $\tau \rightarrow l \alpha (\rightarrow invis.)$;
- More Z' searches, Dark Photon and Long Lived Particles (LLP's);
- → Perform measurements for which BaBar and Belle did not use full luminosity.

The Belle II Collaboration

• 26 countries, 113 institutions, close to 1000 collaborators

- Although Belle has stopped data taking for ~10 years ago, we are still producing exciting results [China group has made great contributions].
- Belle II started data taking on 25 March with its full detector.
- Belle II will reach 50 ab⁻¹ by 2027, which will provide greater sensitivity and precise measurements in hadron physics

Belle II physics book (arXiv:1808.10567): https://arxiv.org/abs/1808.10567

Thanks for your attention

沈成平

shencp@buaa.edu.cn

Observation of $\Xi^0(1620)$ and evidence for $\Xi^0(1690)$

PRL 122, 072501

(2019)

List of E(S=-2) particles from PDG

Status as seen in — Overall J^P Particle ΛK Other channels ΣK status $\Xi\pi$ $\Xi(1530)\pi$ $\Xi(1318)$ 1/2 +Decays weakly **** $\Xi(1530)$ 3/2+**** **** NOT much is known about Ξ^* \bullet $\Xi(1620)$ * * Not found $\frac{1}{2}$? With L =1 ٠ $\Xi(1690)$ *** ** *** 3/2- $\Xi(1620)$ and $\Xi(1690)$ are $\Xi(1820)$ • *** *** ** ** ** $\Xi(1950)$ candidates *** ** ** * $\Xi(2030)$ *** ** *** $\Xi\pi$ is possible mode ۰ $\Xi(2120)$ * * $\Xi(2250)$ 3-body decays ** $\Xi(2370)$ 3-body decays ** $\Xi(2500)$ 3-body decays * * *

**** Existence is certain, and properties are at least fairly well explored.

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.

** Evidence of existence is only fair.

* Evidence of existence is poor.

Status of the $\Xi(1620)$

One star:

Evidence of existence is poor E. Briefel, PRD 16, 2706 (1977)

The data for this analysis came from two separate exposures, consisting of ~10⁶ pictures each, of the BNL 31-in. bubble chamber to a separated beam of 2.87-GeV/c K⁻ mesons. During the first But !! J.K.Hassall says "no evidence" In NPB189 (1981) 397

the Argonne 12 foot bubble chamber

The $\Xi^-\pi^+$ effective-mass distributions for the reaction $K^-p \rightarrow \Xi^-\pi^+K^0$

Search for $\Xi^0(1620)$ and $\Xi^0(1690)$ at Belle

Search for $\Xi^0(1620)$ and $\Xi^0(1690)$ at Belle in the low channel: $\Xi_c^+ \rightarrow \Xi^{*0}\pi^+, \Xi^{*0} \rightarrow \Xi^-\pi^+$

Data set:

Total 980fb⁻¹

Data sample	Luminosity(fb ⁻¹)	Data sample	Luminosity(fb ⁻¹)
Υ(1 <i>S</i>)	5.74	Y(2S)	24.91
Υ(3 <i>S</i>)	2.9	<i>e</i> + <i>e</i> − at √s=10.52GeV	89.5
e^+e^- at \sqrt{s} =10.58GeV	711.0	e^+e^- at \sqrt{s} =10.867GeV	121.4

Crucial Selection criteria:

- To purify the \mathcal{Z}_c^+ samples, the scaled momentum $x_p = \frac{p_{CM}}{\sqrt{\frac{1}{4}s m(\Xi_c^+)^2}} < 0.5$
- The retained Ξ^- candidates are combined with the lower and higher momentum pions, as labeled π_L^+ and π_H^+ .
- A vertex fit is applied to the $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ decay, and the $\chi^2 < 50$

Observation of $\Xi^0(1620)$ and evidence for $\Xi^0(1690)$

Ξ ⁰ (1620) state			
Mass (MeV/c ²)	1610.4 <u>+</u> 6.0 ^{+5.9} 3.5		
Width (MeV)	$59.9 \pm 4.8 \substack{+2.8 \\ -3.0}$		

PRL 122, 072501

In the simultaneous fit

- The E⁰(1530) and E⁰(1690) signals are modeled with P- and S-wave relativistic BW functions.
- The E⁰(1620) signal is modeled with the S-wave relativistic BW function.
- The interference between E⁰(1620) and the S-wave nonresonant process is taken into account.
- The combinatorial backgrounds are described by a threshold.

When the S-wave (P-wave) relativistic BW with fixed mass and width is used as the fitting function, the significance for $\Xi^0(1690)$ is 4.6 σ (4.0 σ).

Observation of an excited Ω^- baryon

PRL 121, 052003 (2018)

$\Omega^- = s s s (S=-3, I=0)$

- 1. Ω^- excited states have proved difficult to find
- Only one excited Ω^- state, $\Omega(2250)$, has been confirmed until now.
- In addition, evidence for two other states of Ω^- was reported.
- The masses of these excited Ω^- are much higher than the ground state (>600MeV).

2. $\Omega^{*-} \rightarrow \Omega^{-} + \pi^{0}$ is highly suppressed since Ω^{-} has isospin

zero

3. Preferred modes

- $\Omega^{*-} \rightarrow \Xi^- + K_S^0 \checkmark$
- $\Omega^{*-} \rightarrow \Xi^0 + K^- \checkmark$
- Low-lying states
- [R. Anianogousto 118,-3820 Rt (2017)]
- [J. Yelton et al. PRD 97, 051102 (2018)]Decays of these narrow resonances proceed via gluons.
 - Production of baryon is enhanced.

Data sample	Luminosity(fb ⁻¹)	Events $(\times 10^8)$
Υ(1 <i>S</i>)	5.7	1.02
Υ(2 <i>S</i>)	24.9	1.58
Y(3S)	2.9	-
- 1. 77		

Observation of an excited Ω^- baryon

Results & Summary

 $\mathcal{R} = \frac{\mathcal{B}(\Omega^{*-} \to \Xi^0 K^-)}{\mathcal{B}(\Omega^{*-} \to \Xi^- \overline{K}^0)} = 1.2 \pm 0.3$

Data	Mode	Mass (MeV/c^2)	Yield	$\Gamma({\rm MeV})$	χ^2 /d.o.f.	n_{σ}
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-, \Xi^- K^0_S$	2012.4 ± 0.7	$242 \pm 48, \ 279 \pm 71$	$6.4^{+2.5}_{-2.0}$	227/230	8.3
	(simultaneous)					
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-$	2012.6 ± 0.8	239 ± 53	6.1 ± 2.6	115/114	6.9
$\Upsilon(1S,2S,3S)$	$\Xi^- K_S^0$	2012.0 ± 1.1	286 ± 87	6.8 ± 3.3	101/114	4.4
Other	$\Xi^0 K^-$	2012.4 (Fixed)	209 ± 63	6.4 (Fixed)	102/116	3.4
Other	$\Xi^- K^0_S$	2012.4 (Fixed)	153 ± 89	6.4 (Fixed)	133/116	1.7

PRL 121, 052003 (2018)

- The gap in the spectrum between the ground state and this excited state (~340 MeV) is smaller than in other Ω^{-} excited states, which is closer to the negative-parity orbital excitations of many other baryons.
- The narrow width observed implies that the quantum number $J^P = \frac{3}{2}^{-1}$ is preferable.

Theoretical interpretation for the $\Omega^*(2012)$

It is generally accepted that $\Omega^*(2012)$ is 1P orbital excitation of the ground state Ω baryon with the three strange quarks, whose quantum numbers are $J^P = \frac{3}{2}^{-1}$.

Notably, the newly observed $\Omega^*(2012)$ is revealed as a KE(1530) hadronic molecule. [PRD 98, 054009 (2018), PRD 98, 056013 (2018), arXiv:1807.02145, arXiv:1807.06485, arXiv:1807.06485, The $K_{\Xi\pi}$ three-body component is largely dominant.

From PRD 98, 056013 (2018

FIG. 1: The three-body decays of $\Omega(2012)$ in the $K \equiv (1530)$ molecular picture.

Mode	$J^P = \frac{3}{2}^- \\ \Omega(2012) \ (K\Xi(1530))$		
	Widths (MeV)	Branch Ratio(%)	
$K\Xi$	0.4	14.3	
$K\pi\Xi$	2.4	85.7	
Total	2.8	100.0	

Search for $\Omega(2012) \rightarrow K\Xi(1530) \rightarrow K\pi\Xi$

We use the same data samples to search for $\Omega(2012) \rightarrow K\Xi(1530) \rightarrow K\pi\Xi$ in the decay of the narrow resonances $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$.

arxiv: 1906.00194

No clear $\Omega(2012)$ signals are observed.

We give the upper limits on the ratios of the branching fractions at 90% C.L. as below.

$$\begin{split} & R_{\Xi^{-}\overline{K}^{0}}^{\Xi^{-}\pi^{+}K^{-}} = \frac{\mathcal{B}(\Omega \to \Xi(1530)^{0}(\to \Xi^{-}\pi^{+})K^{-})}{\mathcal{B}(\Omega \to \Xi^{-}\overline{K}^{0})} < 9.3\% \\ & R_{\Xi^{-}\overline{K}^{0}}^{\Xi^{-}\pi^{0}\overline{K}^{0}} = \frac{\mathcal{B}(\Omega \to \Xi(1530)^{-}(\to \Xi^{-}\pi^{0})\overline{K}^{0})}{\mathcal{B}(\Omega \to \Xi^{-}\overline{K}^{0})} < 81.1\% \\ & R_{\Xi^{0}K^{-}}^{\Xi^{0}\pi^{-}\overline{K}^{0}} = \frac{\mathcal{B}(\Omega \to \Xi(1530)^{-}(\to \Xi^{0}\pi^{-})\overline{K}^{0})}{\mathcal{B}(\Omega \to \Xi^{0}K^{-})} < 21.3\% \\ & R_{\Xi^{0}K^{-}}^{\Xi^{0}\pi^{0}K^{-}} = \frac{\mathcal{B}(\Omega \to \Xi(1530)^{0}(\to \Xi^{0}\pi^{0})K^{-})}{\mathcal{B}(\Omega \to \Xi^{0}K^{-})} < 30.4\% \\ & R_{\Xi^{0}K^{-}}^{\Xi^{-}\pi^{+}K^{-}} = \frac{\mathcal{B}(\Omega \to \Xi(1530)^{0}(\to \Xi^{-}\pi^{+})K^{-})}{\mathcal{B}(\Omega \to \Xi^{0}K^{-})} < 7.8\% \\ & R_{\Xi^{-}\overline{K}^{0}}^{\Xi^{0}\pi^{-}\overline{K}^{0}} = \frac{\mathcal{B}(\Omega \to \Xi(1530)^{-}(\to \Xi^{-}\pi^{0})\overline{K}^{0})}{\mathcal{B}(\Omega \to \Xi^{-}\overline{K}^{0})} < 25.6\% \end{split}$$

Search for $\Omega(2012) \rightarrow K\Xi(1530) \rightarrow K\pi\Xi$

A simultaneous fit to all three-body decay modes is performed.

 $R_{\Xi K}^{\Xi \pi K} = \frac{\mathcal{B}(\Omega \to \Xi(1530)(\to \Xi \pi)K)}{\mathcal{B}(\Omega \to \Xi K)} = (6.0 \pm 3.7 (\text{stat.}) \pm 1.3 (\text{syst.}))\%$ $R_{\Xi K}^{\Xi \pi K} = \frac{\mathcal{B}(\Omega \to \Xi(1530)(\to \Xi \pi)K)}{\mathcal{B}(\Omega \to \Xi K)} < 11.9\% \text{ at } 90\% \text{ C.L.}$