Triple J/ψ **Production at Hadronic Colliders**

Yu-Jie Zhang

Beihang Univeisity

2019.11.09-10 Peking University

Based on Hua-Sheng Shao, YJZ, PRL122(2019)192002

November 9, 2019

Introduction

Outline

- Quarkonium hadronic productions
- Multiparton scattering
- 2 The frame of Calculation

3 Numerical Result

- Numerical Result of $J/\psi + J/\psi + J/\psi + X$
- Numerical Result for $\Upsilon + J/\psi + \phi$

Summary

Introduction

Quarkonium hadronic productions

Quarkonium productions at B factories

Puzzle of J/ψ productions at B factories, Liu, He, KTC, PLB557(2003)45

- Belle data (hep-ex/0205104):
 - $\sigma[e^+e^-
 ightarrow J/\psi + \eta_c] imes Br_{\eta_c}[> 2 charged] = 33 \pm 12 \, fb$
- **2** Theoretical prediction: $\sigma[e^+e^- \rightarrow J/\psi + \eta_c] = 5 \pm 1 \, fb$

NLO of J/ψ productions at B factories

- Zhang, Gao, KTC, PRL(2006); Gong, Wang, PRD(2008): $\sigma[J/\psi + \eta_c] = 18 fb$; He, Fan, KTC, PRD(2010); Feng, Jia, Sang, 1901.08447
- 2 Zhang, KTC, PRL96(2006)092001; Gong, Wang, PRD77(2008)054028: $\sigma[e^+e^- → J/\psi + c\bar{c}] = 0.5pb$
- Ma, Zhang, KTC, PRL102 (2009) 162002; Gong, Wang, PRL102(2009)162003: $\sigma[e^+e^- \rightarrow J/\psi + gg] = 0.3 \ pb$

Quarkonium hadronic productions

Quarkonium productions

Quarkonium production have been studied by

- Kuang-Ta Chao group
- Yu-Qi Chen group
- Yu Jia group
- B. A. Kniehl group
- Cong-Feng Qiao group
- Jian-Xiong Wang group
- **②** ...

Introduction	
000000000000000000000000000000000000000	

Numerical Result

Quarkonium hadronic productions

NLO J/ψ polarization at CDF, KTC, Ma, Shao, Wang, Zhang, PRL108(2012) 242004

Quarkonium hadronic productions

Quarkonium productions

NLO J/ψ at LHCb, Chao/Wang/Kniehl, 1506.03981

Introd	luction
0000	0000000000

Quarkonium hadronic productions

CO LDMEs, 1212.2037

	Butenschoen,	Gong, Wang,	Chao, Ma,	Shao, Wang, Z	$hang^{52}$
	Kniehl ¹⁸	Wan, Zhang ⁵³	default set	set 2	set 3
$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[1]})\rangle$	$1.32 \ {\rm GeV^3}$	$1.16 \ { m GeV^3}$	$1.16 \ { m GeV}^3$	$1.16 \ { m GeV^3}$	$1.16 \ { m GeV^3}$
$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$0.0497 \ \mathrm{GeV^3}$	$0.097 \ { m GeV^3}$	$0.089 \ \mathrm{GeV^3}$	0	$0.11~{ m GeV^3}$
$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle$	$0.0022~{\rm GeV}^3$	$-0.0046~{\rm GeV}^3$	$0.0030~{\rm GeV}^3$	$0.014 \ { m GeV}^3$	0
$\langle \mathcal{O}^{J/\psi}({}^3P_0^{[8]})\rangle$	$-0.0161~{\rm GeV^5}$	$-0.0214~{\rm GeV^5}$	$0.0126~{\rm GeV}^5$	$0.054~{\rm GeV}^5$	0
$\langle \mathcal{O}^{\psi'}({}^3S_1^{[1]})\rangle$		$0.758 \ { m GeV}^3$			
$\langle \mathcal{O}^{\psi'}({}^1S_0^{[8]})\rangle$		$-0.0001~{\rm GeV^3}$			
$\langle \mathcal{O}^{\psi'}({}^3S_1^{[8]})\rangle$		$0.0034 \ { m GeV^3}$			
$\langle \mathcal{O}^{\psi'}({}^{3}P_{0}^{[8]})\rangle$		$0.0095~{\rm GeV}^5$			
$\langle \mathcal{O}^{\chi_0}({}^3P_0^{[1]})\rangle$		$0.107 \ { m GeV^5}$			
$\langle \mathcal{O}^{\chi_0}({}^3S_1^{[8]})\rangle$		$0.0022~{\rm GeV^3}$			

Quarkonium hadronic productions

J/ψ production and polarization at LHC

KTC Group, PRL106(2011), 108(2012), 112(2014), 114(2015)

- Production and polarization prediction is confirmed by Atlas/CMS: 1307.6070, 1404.7035, 1502.04155, 1603.02913, 1709.03089, ...
- Physics picture is confirmed by Bodwin, et al., PRL113(2014)022001
- Physics picture is confirmed CMS: 1910.01686

CERN Courier 2015 March: the cross-section measurements are actually found to agree with the polarization data, indicating that the bound-state formation through coloured ${}^{1}S_{0}$ pre-resonance is dominant (Bodwin et al. 2014, Chao et al. 2012, Faccioli et al. 2014)

Introduction

The Frame of Calculation

Numerical Result

Quarkonium hadronic productions

Double J/ψ at CMS, Sun, Han, Chao, 1404.4042

The Frame of Calculation

Numerical Result

Quarkonium hadronic productions

2 J/ψ , Lansberg, Shao, Yamanaka, YJZ 1906.10049, He's talk in tomorrow

Introduction	
000000000000000000000000000000000000000	

Numerical Result

Multiparton scattering

Double parton correlation in proton (Enterria, Snigirev, 1708.07519)

Single-parton Scattering with $\sigma^{inel}(pp) \sim 30 - 50 \text{ mb}$

$$\mathbf{P}_{pp \to a}^{SPS} = \frac{\sigma(pp \to a + X)}{\sigma^{inel}(pp)},\tag{1}$$

Double parton scattering, but $\sigma_{e\!f\!f}^{DPS} \sim 10-15~{
m mb}$

$$P_{pp\to ab}^{DPS} = P_{pp\to a}^{SPS} \times P_{pp\to b}^{SPS}$$

$$\sigma^{DPS}(pp \to a + X) = \frac{\sigma(pp \to a + X)\sigma(pp \to b + X)}{\sigma_{eff}^{DPS}}$$
(2)

Introduction	The Frame of Calculation	Numerical Result	Summary
Multiparton scattering			
SPS, DPS, and TP	S		

Single-/Double-/Triple-parton scattering (SPS/DPS/TPS): 1/2/3 partons from proton.

$$\circ \sigma^{TPS} : \sigma^{DPS} \sigma^{SPS} \sim \Lambda^4_{QCD} : \Lambda^2_{QCD} : 1$$

Figure: SPS/DPS/TPS triple J/ψ production at SPPC

Multiparton scattering

Multi-parton correlation

Multi-parton correlation (MPI)

- The cross sections of Multi-parton correlation are either strongly model dependent or assuming no correlation between MPI.
- We assume no correlation between MPI.
- The DPS studies at the LHC and Tevatron suggest that no correlation assumption is a rather good approximation.
- A N-parton scattering (NPS) cross-section (1708.07519)

$$\underset{f_{1}\cdots f_{N}}{\text{NPS}} = \frac{m}{N!} \frac{\prod_{i=1}^{N} \sigma_{f_{i}}^{\text{SPS}}}{\left(\sigma_{\text{eff.N}}\right)^{N-1}},$$

(3)

Introduction	The Frame of Calculation	Numerical Result	Summary
Multiparton scattering			
N-parton scattering			

A N-parton scattering (NPS) cross-section (1708.07519)

$$\sigma_{f_1\cdots f_N}^{\mathrm{NPS}} = rac{m}{N!} rac{\prod_{i=1}^N \sigma_{f_i}^{\mathrm{SPS}}}{\left(\sigma_{\mathrm{eff},\mathrm{N}}
ight)^{N-1}},$$

2 The factor $\frac{m}{N!}$: the indistinguishable final state symmetry.

Section of producing final state f_i .

• $\sigma_{\rm eff,N}$: the effective cross section, which should be determined by experiments.

- **•** The DPS and TPS cases correspond to N = 2 and N = 3.
- **10** Ref. 1612.05582 derives $\sigma_{\text{eff},3} = (0.82 \pm 0.11) \times \sigma_{\text{eff},2}$.

(4)

Introduction

The Frame of Calculation

Numerical Result

Multiparton scattering

σ_{eff}^{DPS} and heavy quarkonium, 1811.11094

Introduction

The Frame of Calculation

Numerical Result

dphi @ D0, Shao, YJZ, PRL117 (2016) 062001

Int	rodı	ictic	on	
				~ ~ .

TPS

The Frame of Calculation

Numerical Result

Multiparton scattering

TPS (1612.05582, 1703.07163, 1710.1152)

TPS theoretical studies in literature are limited to open heavy-flavor productions so far. The complete study including SPS and DPS is not available.

Figure: TPS of $pP_b \rightarrow c\bar{c} + c\bar{c} + c\bar{c}$ (PRL118, 122001).

The frame of Calculation

(5)

Total triple J/ψ hadroproduction cross sections

DPS and TPS cross sections

We will use the following concrete formula:

$$\begin{array}{l} & \sigma^{\mathrm{DPS}}(pp \rightarrow J/\psi J/\psi J/\psi + X) \\ = & \frac{\sigma^{\mathrm{SPS}}(pp \rightarrow J/\psi J/\psi + X)\sigma^{\mathrm{SPS}}(pp \rightarrow J/\psi + X)}{\sigma_{\mathrm{eff},2}}, \\ & \sigma^{\mathrm{TPS}}(pp \rightarrow J/\psi J/\psi J/\psi + X) \\ = & \frac{1}{6} \frac{\left[\sigma^{\mathrm{SPS}}(pp \rightarrow J/\psi + X)\right]^{3}}{\left(\sigma_{\mathrm{eff},3}\right)^{2}} \end{array}$$

to calculate DPS and TPS cross sections.

Introduction	

(7)

SPS cross sections

Hadron and Parton level cross sections

$$\sigma(h_1h_2 \to \mathcal{J}\mathcal{J}\mathcal{J}) = \sum_{a,b} f_{a/h_1} \otimes f_{b/h_2} \otimes \hat{\sigma}(ab \to \mathcal{C} + \mathcal{J} + \mathcal{J} + X).$$
(6)

Parton level cross section

$$egin{aligned} & d\hat{\sigma}(ab o \mathcal{J}\mathcal{J}\mathcal{J}) &= \sum_{n_1,n_2,n_2} \hat{\sigma}(ab o car{c}[n_1]car{c}[n_2]car{c}[n_3]+X) \ & \langle O^{\mathcal{J}}(n_1)
angle \langle O^{\mathcal{J}}(n_2)
angle \langle O^{\mathcal{J}}(n_3)
angle \end{aligned}$$

One of 28774 Feynman Diagrams of SPS

Feynman Diagrams of DPS

Feynman Diagrams of TPS

Introduction	

Numerical Result ●○○○○○

$J/\psi + J/\psi + J/\psi + X$

SPS cross sections with $p_T(J/\psi) > 2$ GeV

σ^{SPS}	Order	$14 { m TeV}$	$100 { m TeV}$
$\frac{J/\psi + X}{J/\psi J/\psi + X}$	α_s^3	$72 \pm 1 \ \mu b$ $67 \pm 2 \ nb$	$300 \pm 8 \ \mu b$ $343 \pm 13 \ nb$
$\frac{J/\psi J/\psi J/\psi + X}{J/\psi J/\psi + X}$	α_s^7	$1 \pm 0.6 \text{ pb}$	$4.2 \pm 3.2 \text{ pb}$

$\sigma(J/\psi J/\psi J/\psi + X)$	Order	$14 { m TeV}$	$\mathrm{CMS} @ 14 ~\mathrm{TeV}$	$100 { m TeV}$
TPS	α_s^9	$620 \pm 20 \text{ pb}$	$45 \pm 1.5 \text{ pb}$	$45000 \pm 1500 \text{ pb}$
DPS	$\alpha_s^{\bar{7}}$	$480\pm20~\rm{pb}$	35 ± 1.5 nb	$10000\pm1000~\rm{pb}$
SPS	$\alpha_s^{\bar{7}}$	$1\pm0.6~\rm{pb}$	$0.07\pm0.04~\rm{pb}$	$4.2 \pm 3.2 \text{ pb}$

Introduction	

 $J/\psi + J/\psi + J/\psi + X$

$J/\psi J/\psi J/\psi + X$ at CMS/Atlas

Search TPS at CMS/Atlas

Integrated luminosity of CMS/Atlas is about 160 fb⁻¹ at $\sqrt{s} = 13$ TeV.

2
$$Br[J/\psi \to \mu^+\mu^-] = 0.059.$$

- Solution Number of events for $3J/\psi(\mu^+\mu^-)$ with $p_T(J/\psi) > 2$ GeV is about 2700 ± 72 , which is 1500 ± 50 from TPS and 1200 ± 50 from DPS.
- We can introduce cut of phase space to distinguish SPS, DPS, and TPS contributions.

Introduction

Numerical Result

$J/\psi + J/\psi + J/\psi + X$

Triple J/ψ production at LHC

Introduction

Numerical Result

$J/\psi + J/\psi + J/\psi + X$

Triple J/ψ production at LHC

Introduction	

Numerical Result 0000●0

$J/\psi + J/\psi + J/\psi + X$

Triple J/ψ production at LHC

Introduction	The Frame of Calculation	Numerical Result ○○○○○●	Summary
Numerical Result for $\Upsilon + J/\psi + q$	þ		
Numerical Result	for $\Upsilon + J/\psi + \phi$		
$\Upsilon, J/\psi, \phi$ at L	HCb		
$\mathbf{O} = \mathbf{\sigma}(\mathbf{\hat{T}}) = 0.2$	0 ub (1804 00214) $\sigma(I/a/b)$	$15 \mu h (1509.00771)$ and	

- $\sigma(\Upsilon) \sim 0.20 \ \mu$ b (1804.09214), $\sigma(J/\psi) \sim 15 \ \mu$ b (1509.00771), and $\sigma(\phi) \sim 3 \$ mb (1107.3935).
- 2 We have gotten $\sigma^{SPS}[\Upsilon + J/\psi] \sim 10$ pb in 1605.03061.

SPS
$$\Upsilon + J/\psi + \phi$$
: $\mathcal{O}(\alpha_s^9)$, very small.

• DPS
$$\Upsilon + J/\psi + \phi$$
: about $3 \times \sigma^{SPS} [\Upsilon + J/\psi] \frac{\sigma[\phi]}{\sigma_{eff}^{DPS}} \sim 10 \text{ pb for } p_T(\phi) > 2 \text{ GeV and} \sigma_{eff}^{DPS} \sim 10 \text{ mb.}$

• TPS $\Upsilon + J/\psi + \phi$: about $\frac{\sigma[\Upsilon]\sigma[J/\psi]\sigma[\phi]}{(\sigma_{eff}^{TPS})^2} \sim 100 \text{ pb for } \sigma_{eff}^{TPS} \sim 10 \text{ mb.}$

Solution Number of events for $\Upsilon(\mu^+\mu^-) + J/\psi(\mu^+\mu^-) + \phi(K^+K^-)$ with $p_T(\phi) > 2$ GeV is about 440.

Introduction	

Summary

We have performed the first analysis of simultaneous production of $J/\psi + J/\psi + J/\psi$ and $\Upsilon + J/\psi + \phi$ from SPS/DPS/TPS contributions at LHC.

Our work shows that it is in fact most probably dominated by TPS and DPS contributions.

Finally, we show that $J/\psi + J/\psi + J/\psi$ and $\Upsilon + J/\psi + \phi$ production at LHC may be studied by experimenters.

Multi parton scattering

The inclusive cross section to produce n hard particles in hadronic colliders is a convolution of generalized n-parton distribution functions (PDF) and elementary partonic cross sections summed over all involved partons,

$$\sigma_{hh' \to a_1...a_n}^{\text{NPS}} = \left(\frac{m}{n!}\right) \sum_{i_1,..,i_n,i'_1,..,i'_n} \int \Gamma_h^{i_1...i_n}(x_1,...,x_n;\mathbf{b_1},..,\mathbf{b_n};Q_1^2,...,Q_n^2) \\ \times \hat{\sigma}_{a_1}^{i_1i'_1}(x_1,x'_1,Q_1^2) \cdots \hat{\sigma}_{a_n}^{i_ni'_n}(x_n,x'_n,Q_n^2) \\ \times \Gamma_{h'}^{i'_1...i'_n}(x'_1,...,x'_n;\mathbf{b_1}-\mathbf{b},...,\mathbf{b_n}-\mathbf{b};Q_1^2,...,Q_n^2) \\ \times dx_1 \dots dx_n dx'_1,\dots, dx'_n d^2b_1,\dots, d^2b_n d^2b.$$
(8)

(10)

The *n*-parton distribution function (1708.07519)

It encodes all the 3D structure information of the hadron.

Assumption 1: the n-PDF are factored in terms of longitudinal and transverse components,

$$\Gamma_h^{i_1...i_n} = D_h^{i_1...i_n}(x_1, ..., x_n; Q_1^2, ..., Q_n^2) f(\mathbf{b_1})...f(\mathbf{b_n})$$
(9)

- 2 We can get hadron-hadron overlap function $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} \mathbf{b}) d^2 b_1$, where $1 = \int T(\mathbf{b}) d^2 b$.
- Assumption 2: the longitudinal components reduce to the product of independent single PDF

$$D_h^{i_1...i_n}(x_1,...,x_n;Q_1^2,...,Q_n^2) = D_h^{i_1}(x_1;Q_1^2)\cdots D_h^{i_n}(x_n;Q_n^2)$$

The cross sections and σ_{eff}^{nPS} (Enterria, Snigirev, 1708.07519)

The cross sections of *n*-particle associated production

Then we can get

$$\sigma_{hh' \to a_1 \dots a_n}^{nPS} = \left(\frac{m}{n!}\right) \frac{\sigma_{hh' \to a_1}^{SPS} \cdots \sigma_{hh' \to a_n}^{SPS}}{\left(\sigma_{eff}^{nPS}\right)^{n-1}},\tag{11}$$

 $\sigma_{e\!f\!f}^{nPS}$

$$\left(\frac{1}{\sigma_{eff}^{nPS}}\right)^{n-1} = \int d^2 b \, T^n(\mathbf{b}) \tag{12}$$