The QCD Calculation for hadronic B decays

Cai-Dian Lü

lucd@ihep.ac.cn CFHEP, IHEP, Beijing

Pure leptonic decays

$\langle P(p)| \bar{q} \gamma^{\mu} L q^{\prime}|0\rangle=i f_{P} p^{\mu}$.

- The decay constant is the normalization of the meson wave function i.e. the zero point of wave function
- The experimental measurement of pure leptonic decay can provide the product of decay constant and CKM matrix element.
- Theoretically decay constant can be calculated by QCD sum rule or Lattice QCD

We have two hadrons in semi-leptonic decays. It is described by form factors

$$
\begin{aligned}
& \langle\boldsymbol{\pi}| \bar{u} \gamma^{\mu} b|B\rangle=p_{B}{ }^{\mu} f_{1}+p_{\pi}{ }^{\mu} f_{2} \quad q=p_{B}-p_{\pi} \\
& =\left[\left(p_{B}+p_{\pi}\right)^{\mu}-\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}\right] F_{1}\left(q^{2}\right)+\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu} F_{0}\left(q^{2}\right) \\
& \begin{array}{l}
\text { Form factors can be calculated by } \\
\text { lattice QCD, QCD sum rules, } \\
\text { light cone sum rules etc. }
\end{array}
\end{aligned}
$$

In the quark model, it is calculated by the overlap of two meson wave functions.

Rich physics in hadronic B decays

CP violation, FCNC, sensitive to new physics contribution...

\qquad
B

B
π

In experiments, we can only observe hadrons

The standard model describes interactions amongst quarks and leptons

How can we test the standard model without solving QCD?

Naïve Factorization (BSW model)

Bauer, Stech, Wirbel, Z. Phys. C29, 637 (1985); ibid 34, 103 (1987)

Hadronic parameters: Form factor and decay constant

$$
<\boldsymbol{\pi}^{+} \boldsymbol{D}^{-}\left|\boldsymbol{H}_{e f f}\right| \boldsymbol{B}>=a_{1} \quad\langle\boldsymbol{\pi}| \bar{u} \gamma^{\mu} L d|0\rangle \quad\langle D| \bar{b} \gamma_{\mu} L c|B\rangle
$$

Generalized Factorization Approach

Ali, Kramer, Lu, Phys. Rev. D58, 094009 (1998)

$$
\mathrm{C}_{1} \sim-0.2 \sim \mathrm{C}_{2}\left(1 / 3+\mathrm{s}_{8}\right) \equiv \mathrm{C}_{2} / \mathrm{N}_{\mathrm{c}} \sim+\mathbf{1} / 3
$$

$$
\left\langle\pi^{0} \bar{D}^{0}\right| H_{e f f}\left|B^{0}\right\rangle=\quad\left(C_{1}+C_{2} / N_{c}\right) f_{D} F_{0}^{B \rightarrow \pi}
$$

Non-factorizable contribution should be larger than expected, characterized by effective N_{C}

Generalized Factorization Approach

Ali, Kramer, Lu, Phys. Rev. D58, 094009 (1998)

$$
\left\langle\pi^{0} \bar{D}^{0}\right| H_{e f f}\left|B^{0}\right\rangle=\quad\left(C_{1}+C_{2} / N_{c}\right) f_{\boldsymbol{D}} F_{0}^{B \rightarrow \pi}
$$

Non-factorizable contribution should be larger than expected, characterized by effective N_{C}

QCD factorization by BBNS: PRL 83 (1999) 1914; NPB591 (2000) 313

$$
\begin{aligned}
-\left\langle L_{1} L_{2}\right| Q_{i}|\bar{B}\rangle= & \sum_{j} F_{j}^{B \rightarrow L_{1}}\left(m_{2}^{2}\right) \int_{0}^{1} d u T_{i j}^{I}(u) \Phi_{L_{2}}(u) \\
& +\sum_{k} F_{k}^{B \rightarrow L_{2}}\left(m_{1}^{2}\right) \int_{0}^{1} d v T_{i k}^{I}(v) \Phi_{L_{1}}(v) \\
& +\int_{0}^{1} d \xi d u d v T_{i}^{I I}(\xi, u, v) \Phi_{B}(\xi) \Phi_{L_{1}}(v) \Phi_{L_{2}}(u)
\end{aligned}
$$

α_{s} corrections to the hard part T

CD Lu

The missing diagrams, which contribute to the renormalization of decay constant or form factors

Endpoint divergence appears in these calculations

The annihilation type diagrams are

 important to the source of strong phases

- However, these diagrams are similar to the form factor diagrams, which have endpoint singularity, not perturbatively calculable.
- These divergences are not physical, can only be treated in QCDF as free parameters, which makes CP asymmetry not predictable:

$$
\int_{0}^{1} \frac{d y}{y} \rightarrow X_{A}^{M_{1}}, \quad \int_{0}^{1} d y \frac{\ln y}{y} \rightarrow-\frac{1}{2}\left(X_{A}^{M_{1}}\right)^{2}
$$

Picture of PQCD Approach

Keum, Li, Sanda, Phys.Rev. D63 (2001) 054008;
Lu, Ukai, Yang, Phys.Rev. D63 (2001) 074009
CD Lu

The leading order emission Feynman diagram in PQCD approach

Form factor diagram

Hard scattering diagram

CD Lu

The leading order Annihilation type Feynman diagram in PQCD approach

Endpoint singularity

- Gluon propagator

$$
\frac{i}{\left(k_{1}-k_{2}\right)^{2}}=\frac{i}{-2 x y m_{B}^{2}}
$$

- $\mathbf{x , y}$ Integrate from $0 \rightarrow 1$, that is endpoint singularity
- The reason is that, one neglects the transverse momentum of quarks, which is not applicable at endpoint.
- If we pick back the transverse momentum, the divergence disappears

$$
\frac{i}{\left(k_{1}-k_{2}\right)^{2}}=\frac{i}{-2 x y m_{B}^{2}-\left(k_{1}^{T}-k_{2}^{T}\right)^{2}}
$$

Endpoint singularity

- It is similar for the quark propagator

$$
\int_{0}^{1} \frac{1}{x} d x=\ln \frac{1}{\varepsilon}
$$

$\int_{0}^{1} \frac{1}{x+k} d x d k=\int d k[\ln (x+k)]_{0}^{1}=\int d k[\ln (1+k)-\ln k]$
The logarithm divergence disappear if one has an extra dimension

However, with transverse momentum, means one extra energy scale

The overlap of Soft and collinear divergence will give double logarithm $\ln ^{2} P b$, which is too big to spoil the perturbative expansion. We have to use renormalization group equation to resum all of the logs to give the so called Sudakov Form factor

Sudakov Form factor $\exp \{-\mathbf{S}(\mathbf{x}, \mathrm{b})\}$

This factor exponentially suppresses the contribution at the endpoint (small \mathbf{k}_{T}), makes our perturbative calculation reliable

CD Lu

CP Violation in $B \rightarrow \pi \pi(K)$ (real prediction before exp.)

CP(\%)	FA	BBNS	PQCD (2001)	Exp (2004)
$\pi^{+} K^{-}$	$+9 \pm 3$	$+5 \pm 9$	-17 ± 5	$-11.5 \pm \boxed{ } .8$
$\pi^{0} K^{+}$	$+8 \pm 2$	7 ± 9	-13 ± 4	$+4 \pm 4$
$\pi^{+} K^{0}$	1.7 ± 0.1	1 ± 1	-1.0 ± 0.5	-2 ± 4
$\pi^{+} \pi^{-}$	-5 ± 3	-6 ± 12	$+30 \pm 10$	$+37 \pm 10$

CP Violation in $B \rightarrow \pi \pi(K)$

Including large annihilation fixed from exp.

$\mathrm{CP}(\%)$	FA	Cheng, HY	PQCD (2001)	Exp
$\pi^{+} K^{-}$	$+9 \pm 3$	-7.4 ± 5.0	-17 ± 5	-9.7 ± 1.2
$\pi^{0} K^{+}$	$+8 \pm 2$	0.28 ± 0.10	-13 ± 4	4.7 ± 2.6
$\pi^{+} K^{0}$	1.7 ± 0.1	4.9 ± 5.9	-1.0 ± 0.5	0.9 ± 2.5
$\pi^{+} \pi^{-}$	-5 ± 3	17 ± 1.3	$\overline{+30 \pm 10}$	$+38 \pm 7$

QCD-methods based on factorization work

 well for the leading power of $1 / m_{b}$ expansioncollinear QCD Factorization approach
[Beneke, Buchalla, Neubert, Sachrajda, 99’]
Perturbative QCD approach based on $\boldsymbol{k}_{\mathbf{T}}$ factorization
[Keum, Li, Sanda, 00'; Lu, Ukai, Yang, 00']
Soft-Collinear Effective Theory
Bauer, Fleming, Pirjol, Stewart, Phys.Rev. D63 (2001) 114020

* Work well for most of charmless B decays, except for $\pi \pi, \pi K$ puzzle etc.

Factorization can only be proved in power expansion by operator product expansion. To achieve that, we need a hard scale Q

- In the certain order of $1 / \mathrm{Q}$ expansion, the hard dynamics characterized by Q factorize from the soft dynamics
- Hard dynamics is process-dependent, but calculable
- Soft dynamics are universal (process-independent) \square predictive power of factorization theorem
- Factorization theorem holds up to all orders in α_{s}, but to certain power in 1/Q

The prove of factorization of QCD from electroweak is not needed

- Flavour $\mathrm{SU}(3)$ irreducible matrix elements
- Topological amplitudes (often with flavour SU(3) or SU(2))

$$
T, C, P, P_{\mathrm{EW}}, S, E, A, \ldots
$$

$\underline{\mathrm{SU}(3) \text { breaking effect was lost. Limited precision! }}$

Factorization assisted topological diagram approach first applied in hadronic D decays

[Li, Lu, Yu, PRD86 (2012) 036012] [FAT]

Predictions of Direct CP asymmetries

Modes	$A_{C P}(\mathrm{FSI})$	$A_{C P}($ diagram $)$	$A_{C P}^{\text {tree }}$	$A_{C P}^{\text {tot }}$
$D^{0} \rightarrow \pi^{+} \pi^{-}$	0.02 ± 0.01	0.86	0	0.58
$D^{0} \rightarrow K^{+} K^{-}$	0.13 ± 0.8	-0.48	0	-0.42
$D^{0} \rightarrow \pi^{0} \pi^{0}$	-0.54 ± 0.31	0.85	0	$0.05 \Delta_{\mathrm{CP}}=$
$D^{0} \rightarrow K^{0} \bar{K}^{0}$	-0.28 ± 0.16	0	1.11	$1.38-1 \times 10^{-3}$
$D^{0} \rightarrow \pi^{0} \eta$	1.43 ± 0.83	-0.16	-0.33	-0.29
$D^{0} \rightarrow \pi^{0} \eta^{\prime}$	-0.98 ± 0.47	-0.01	0.53	1.53
$D^{0} \rightarrow \eta \eta$	0.50 ± 0.29	-0.71	0.29	0.18
$D^{0} \rightarrow \eta \eta^{\prime}$	0.28 ± 0.16	0.25	-0.30	-0.94

Exp Averages

Tree topology diagram contributing to Charmless B decays

For the color favored diagram (T), it is proved factorization to all order of α_{s} expansion in soft-collinear effective theory,

(a) T

The decay amplitudes is just the decay constants and form factors times Wilson coeficients of four quark operators. The $\mathrm{SU}(3)$ breaking effect is automatically kept

$$
T^{P_{1} P_{2}}=i \frac{G_{F}}{\sqrt{2}} V_{u b} V_{u q^{\prime}} a_{1}(\mu) f_{p_{2}}\left(m_{B}^{2}-m_{p_{1}}^{2}\right) F_{0}^{B P_{1}}\left(m_{p_{2}}^{2}\right),
$$

No free
parameter

$$
\begin{aligned}
& T^{P V}=\sqrt{2} G_{F} V_{u b} V_{u q^{\prime}} a_{1}(\mu) f_{V} m_{V} F_{1}^{B-P}\left(m_{V}^{2}\right)\left(\varepsilon_{V}^{*} \cdot p_{B}\right), \\
& T^{V P}=\sqrt{2} G_{F} V_{u b} V_{u q^{\prime}} a_{1}(\mu) f_{P} m_{V} A_{0}^{B-V}\left(m_{P}^{2}\right)\left(\varepsilon_{V}^{*} \cdot p_{B}\right),
\end{aligned}
$$

For other diagrams, we extract the amplitude and strong phase from experimental data by χ^{2} fit
We factorize out the decay constants and form factor to keep the $\mathrm{SU}(3)$ breaking effect

For the color suppressed tree diagram (C), we have two kinds of contributions
(b) C

$$
\begin{aligned}
& C^{P_{1} P_{2}}=i \frac{G_{F}}{\sqrt{2}} V_{u b} V V_{i^{\prime}} \chi^{C} \mathrm{e}^{i \phi^{C}} f_{P_{1}}\left(m_{B}^{2}-m_{p_{1}}^{2}\right) F_{0}^{B P_{1}}\left(m_{p_{2}}^{2}\right), \\
& C^{P V}=\sqrt{2} G_{F} V_{u} \mid V_{u q^{\prime}} \chi^{C^{\prime}} \mathrm{e}^{i \phi^{\phi^{\prime}}} \\
& C^{V P}\left.=\sqrt{2} G_{F} V_{u b} F_{v q^{\prime}}^{B-P} \chi^{C} \mathrm{e}^{i \phi^{C}} m_{V}^{2}\right)\left(\varepsilon_{V}^{*} \cdot p_{B}\right), \\
& P m_{V} A_{0}^{B-V}\left(m_{P}^{2}\right)\left(\varepsilon_{V}^{*} \cdot p_{B}\right),
\end{aligned}
$$

Global Fit for all $B \rightarrow P P, V P$ and PV

decays \quad with $\chi^{2} /$ d.o.f $=45.2 / 34=1.3$.

35 branching Ratios and 11 CP violation observations

 data are used for the fit$$
\begin{aligned}
& \chi^{C}=0.48 \pm 0.06, \quad \phi^{C}=-1.58=0.08, \\
& \chi^{C^{\prime}}=0.42 \pm 0.16, \quad \phi^{C^{\prime}}=1.59 \pm 0.17, \chi^{2}=\sum_{i=1}\left(\frac{x_{i}^{\mathrm{h}}-x_{i}}{\Delta x_{i}}\right)^{2} \\
& \chi^{E}=0.057 \pm 0.005, \quad \phi^{-}=2.11 \pm 0.13, \\
& \chi^{P}=0.10 \pm 0.02, \quad \phi^{P}=-0.61 \pm 0.02 . \\
& \chi^{P_{C}}=0.048 \pm 0.003, \quad \phi^{P_{C}}=1.56 \pm 0.08, \\
& \chi^{P_{C}^{\prime}}=0.039 \pm 0.003, \quad \phi_{C}^{P_{C}^{\prime}}=0.68 \pm 0.08, \\
& \chi^{P_{A}}=0.0059 \pm 0.0008, \quad \phi^{P_{A}}=1.51 \pm 0.09, \\
& \text { Zhou, Zhang, Lyu and Lü, } \\
& \text { EPJC (2017) 77: } 125
\end{aligned}
$$

Comparison of different contributions from FAT and QCDF

Table 1 The amplitudes and strong phases of topological diagrams in the FAT corresponding to contributions in the QCDF. The topology A and P_{E} are neglected in the FAT. The electroweak penguin contributions of $\alpha_{4}^{\mathrm{EW}}, \beta_{3}^{\mathrm{EW}}$ and β_{4}^{EW} in the QCDF are also neglected in the FAT

Diagram	T	P_{C}	P (PP)	$P_{\text {EW }}$	E	A	$P_{A}(\mathrm{PV})$	P_{E}
FAT	$\begin{array}{ll} a_{1} & \chi^{C^{(1)}} \mathrm{e}^{i \phi^{(c)}} \\ - & 0.48 \mathrm{e}^{-1.58 i} \end{array}$	$\begin{aligned} & \chi_{C}^{P_{C}^{(1)}} \mathrm{e}^{i \phi_{C}^{p^{(1)}}} \\ & 0.048 \mathrm{e}^{1.56 i} \end{aligned}$	$\begin{aligned} & a_{4}(\mu)+\chi^{P} \mathrm{e}^{i \phi^{P}} r_{\chi} \\ & -0.12 \mathrm{e}^{-0.24 i} \end{aligned}$	$\begin{aligned} & a_{9}(\mu) \\ & -0.009 \end{aligned}$	$\begin{aligned} & \chi^{E} \mathrm{e}^{i \phi^{E}} \\ & 0.057 \mathrm{e}^{2.71 i} \end{aligned}$	-	$\begin{aligned} & -i \chi^{P_{A}} \mathrm{e}^{i \phi_{A}{ }_{A}} \\ & 0.0059 \mathrm{e}^{-0.006 i} \end{aligned}$	-
QCDF	α_{1} α_{2} - $0.22 \mathrm{e}^{-0.53 i}$	$\begin{aligned} & \alpha_{3} \\ & 0.011 \mathrm{e}^{2.23 i} \end{aligned}$	$\begin{aligned} & \alpha_{4} \\ & -0.089 \mathrm{e}^{0.11 i} \end{aligned}$	$\begin{aligned} & \alpha_{3}^{\mathrm{EW}} \\ & -0.009 \mathrm{e}^{0.04 i} \end{aligned}$	$\begin{aligned} & \beta_{1} \\ & 0.025 \end{aligned}$	$\begin{aligned} & \beta_{2} \\ & -0.011 \end{aligned}$	$\begin{aligned} & \beta_{3} \\ & -0.008 \end{aligned}$	$\begin{aligned} & \beta_{4} \\ & -0.003 \end{aligned}$

CKM angle gamma extraction

All the tree amplitudes in charmless B decays are proportional to $\mathrm{V}_{\mathrm{ub}} \mathrm{V}_{\mathrm{ud}, \mathrm{s}}{ }^{*}$; while the penguin amplitudes are proportional to $\mathbf{V}_{\mathrm{tb}} \mathbf{V}_{\mathrm{td}, \mathrm{s}}{ }^{*}=-\left(\mathbf{V}_{\mathbf{u b}} \mathbf{V}_{\mathrm{ud}, \mathrm{s}}{ }^{*}+\mathbf{V}_{\mathrm{cb}} \mathbf{V}_{\mathrm{cd}, \mathrm{s}}{ }^{*}\right)$.

Except $\mathbf{V}_{u b} \equiv\left|\mathbf{V}_{u b}\right| \mathrm{e}^{-\mathrm{i} \gamma}$, all other CKM matrix elements are approximately real numbers without electroweak phase.

So after input the magnitudes of the following CKM matrix elements,

$$
\begin{array}{lll}
\left|V_{u d}\right|=0.97420 \pm 0.00021, & \left|V_{u s}\right|=0.2243 \pm 0.0005, & \left|V_{u b}\right|=0.00394 \pm 0.00036 \\
\left|V_{c d}\right|=0.218 \pm 0.004, & \left|V_{c s}\right|=0.997 \pm 0.017, & \left|V_{c b}\right|=0.0422 \pm 0.0008
\end{array}
$$

We can extract the CKM angle gamma by global fit all the charmless B decays

Global Fit for all B \rightarrow PP, VP and PV decays with gamma as free parameter

 with $\chi^{2} /$ d.o.f $=45.4 / 33=1.4$.We use 37
branching ratios and 11 CP
violation
observations of all $\mathrm{B} \rightarrow \mathbf{P} \mathbf{P}, \mathbf{P} \mathbf{V}$
decays from the current experimental data

$$
\begin{gathered}
\left.\gamma=(69.8 \pm 2.1)^{\circ}\right) \\
\chi^{C}=0.41 \pm 0.06, \quad \phi^{C}=-1.74 \pm 0.09 \\
\chi^{C^{\prime}}=0.40 \pm 0.17, \quad \phi^{C^{\prime}}=1.78 \pm 0.10 \\
\chi^{E}=0.06 \pm 0.006, \quad \phi^{E}=2.76 \pm 0.13 \\
\chi^{P}=0.09 \pm 0.003, \quad \phi^{P}=2.55 \pm 0.03 \\
\chi^{P_{C}}=0.045 \pm 0.003, \quad \phi^{P_{C}}=1.53 \pm 0.08 \\
\chi^{P_{C}^{\prime}}=0.037 \pm 0.003, \quad \phi^{P_{C}^{\prime}}=0.67 \pm 0.08 \\
\chi^{P_{A}}=0.006 \pm 0.0008, \quad \phi^{P_{A}}=1.49 \pm 0.09
\end{gathered}
$$

Global Fit for all B \rightarrow PP, VP and PV decays with gamma as free parameter

 with $\chi^{2} /$ d.o.f $=45.4 / 33=1.4 . \quad \gamma=(69.8 \pm 2.1 \pm 0.9)^{\circ}$We use 37
branching ratios and 11 CP
violation
observations of all
B $\rightarrow \mathbf{P} \mathbf{P}, \mathbf{P} \mathbf{V}$
decays from the
current
experimental data

$$
\begin{gathered}
\gamma=(69.8 \pm 2.1)^{\circ} \quad \begin{array}{l}
\text { Uncertainty from } \\
\text { input parameters }
\end{array} \\
\chi^{C}=0.41 \pm 0.06, \quad \phi^{C}-1.1 \pm \pm \mathrm{v.v} \mathrm{\Sigma}, \\
\chi^{C^{\prime}}=0.40 \pm 0.17, \quad \phi^{C^{\prime}}=1.78 \pm 0.10, \\
\chi^{E}=0.06 \pm 0.006, \quad \phi^{E}=2.76 \pm 0.13, \\
\chi^{P}=0.09 \pm 0.003, \quad \phi^{P}=2.55 \pm 0.03 \\
\chi^{P_{C}}=0.045 \pm 0.003, \quad \phi^{P_{C}}=1.53 \pm 0.08, \\
\chi^{P_{C}^{\prime}}=0.037 \pm 0.003, \quad \phi^{P_{C}^{\prime}}=0.67 \pm 0.08, \\
\chi^{P_{A}}=0.006 \pm 0.0008, \quad \phi^{P_{A}}=1.49 \pm 0.09,
\end{gathered}
$$

Comparison of gamma measurement

$$
\gamma=(69.8 \pm 2.1 \pm 0.9)^{\circ}
$$

HFLAV Collaboration $\quad \gamma=\left(71.1_{-5.3}^{+4.6}\right)^{\circ}$

CKMfit Collaboration $\quad \gamma=\left(73.5_{-5.1}^{+4.2}\right)^{\circ}$
Less
uncertainty
than others

UTfit Collaboration $\quad \gamma=(70.0 \pm 4.2)^{\circ}$
Recent LHCb result $\gamma={ }^{\prime}\left(74.0_{-5.8}^{+5.0}\right)^{\circ}$
Zhou and Lu. arXiv: 1910.03160

Summary/Challenges

- Hadronic B Decays are important in the test of standard model and search for signals of new physics.
- A great progress has been made in both theoretical and experimental sides
- Next-to-leading order perturbative calculations and power corrections in QCD is needed to explain the more and more precise experimental data

祝赵老师生日快乐

祝赵老师生日快乐

2012

