Top quark pair production w/ and w/o a Higgs boson

Li Lin Yang Peking University

Basic facts about the top quark

Large mass $m_t \approx 173 \text{ GeV}$

Strong Yukawa coupling $y_t \sim 1$

Fermion mass origin Hierarchy problem Vacuum stability

Short lifetime $\tau \sim 5 \times 10^{-25}$ s

Decays before hadronization: pQCD dominates!

Implications of the top quark mass

2018 Review of Particle Physics

A. Andreassen, W. Frost, M. D. Schwartz: 1707.08124

Top quark pair production

A standard candle for the LHC and future colliders

- Main production mechanism for top quarks
- ► Test of the Standard Model at the energy frontier
- ► Measurement of PDFs, strong coupling and top quark mass
- Possible signals of new physics
- Major background to many searches

State-of-the-art predictions

NNLO+NNLL' in QCD

Pecjak, Scott, Wang, LLY: 1601.07020

Czakon, Heymes, Mitov: 1606.03350

Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, **LLY**: 1803.07623

Pecjak, Scott, Wang, LLY: 1811.10527

State-of-the-art predictions

Combined with NLO electroweak corrections

CMS collaboration: 1811.06625

CMS collaboration: 1811.06625

Transverse momentum

CMS collaboration: 1811.06625

CMS collaboration: 1811.06625

לר<u>ה</u>רוי

Overall good agreement

CMS collaboration: 1811.06625

Threshold region and top quark mass

The differential cross sections in the threshold region are highly sensitive to the top quark mass

Threshold region and top quark mass

The differential cross sections in the threshold region are highly sensitive to the top quark mass

Can be used to fit $m_t!$

A closer look at the threshold region

Seems like a systematic deviation, affected by neither electroweak corrections nor soft gluon resummation

A closer look at the threshold region

Seems like a systematic deviation, affected by neither electroweak corrections nor soft gluon resummation **Could it be an experimental issue?**

Much larger uncertainties for the first bin in the lepton+jet channel reported by ATLAS&CMS: inconclusive $d\sigma_{t\bar{t}}$ / $dy^{t\bar{t}}$ [pb] ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

Full phase-space

Resolved

500

400

Much larger uncertainties for the first bin in the lepton+jet channel reported by ATLAS&CMS: inconclusive Let's check what we might have missed on the theory side...

Non-relativistic Coulomb corrections

When the top and anti-top quarks move slowly with respect to each other, exchanges of gluons in between lead to "Coulomb corrections" or "Sommerfeld enhancement"

Coulomb corrections for total cross section

Coulomb corrections for total cross section have been considered in, e.g.:

Beneke, Czakon, Falgari, Mitov, Schwinn: 0911.5166 Beneke, Falgari, Schwinn: 1007.5414

Remark: top quark physics is a good place to study NRQCD since mv^2 is (very often) a perturbative scale

Coulomb corrections for invariant mass distribution

The top quark pair can be recoiled by extra hard emissions See, .e.g., Kiyo et al.: 0812.0919

Coulomb corrections for invariant mass distribution

The top quark pair can be recoiled by extra hard emissions See, .e.g., Kiyo et al.: 0812.0919

Further complication: "dynamic scales"

$$H_T = \sqrt{p_{T,t}^2 + m_t^2} + \sqrt{p_{T,\bar{t}}^2 + m_t^2}$$

Coulomb corrections for invariant mass distribution

The top quark pair can be recoiled by extra hard emissions See, .e.g., Kiyo et al.: 0812.0919

Further complication: "dynamic scales"

$$H_T = \sqrt{p_{T,t}^2 + m_t^2} + \sqrt{p_{T,\bar{t}}^2 + m_t^2}$$

Requires a new resummation formula (retaining information about the top and anti-top quarks)

Factorization and resummation

Ju, Wang, Wang, Xu, Xu, LLY: 1908.02179

Kinematics-dependent hard function (different from known ones in literature)

We calculate it analytically to the next-to-leading order

Factorization and resummation

Ju, Wang, Wang, Xu, Xu, LLY: 1908.02179

Kinematics-dependent hard function (different from known ones in literature)

We calculate it analytically to the next-to-leading order

Note: no soft function at NLP! What about higher powers?

Perturbative behavior

Ju, Wang, Wang, Xu, Xu, LLY: 1908.02179

Fixed-order expansion divergent in the threshold limit

Compare to data

Ju, Wang, Wang, Xu, Xu, LLY: 1908.02179

Enhance the differential cross section by 9% (compared to NNLO)

Better compatibility with CMS di-lepton data And also compatible with ATLAS&CMS l+j data

Will have implications in the fits of top quark mass!

Adding a hard jet

Work in progress...

The ATLAS Collaboration

Theoretically interesting: High p_T limit resembles J/ψ production

Polluted by non-perturbative effects for J/ψ

But should be perturbatively calculable for $t\overline{t}$

Adding a Higgs

The $t\bar{t}$ can also be recoiled by a Higgs boson

Probing the Yukawa coupling of the top quark (origin of mass)

NLO QCD known since 2001

Beenakker et al.: hep-ph/0107081, hep-ph/0211352 *g* Reina, Dawson: hep-ph/0107101 Reina, Dawson, Wackeroth: hep-ph/0109066

Observed at the LHC

CMS collaboration: 1804.02610

ATLAS collaboration: 1806.00425

Beyond NLO for differential cross sections

Broggio, Ferroglia, Pecjak, LLY: 1611.00049

State-of-the-art QCD predictions for this process: NLO+NNLL

Coulomb corrections for total rate

Ju, LLY: 1904.08744

Consider the threshold region

$$\sqrt{\hat{s}} \to 2m_t + m_H$$
$$\beta = \sqrt{1 - \frac{(2m_t + m_H)^2}{\hat{s}}} \to 0$$

Sudakov and Sommerfeld corrections

Coulomb corrections for total rate

Ju, LLY: 1904.08744

Consider the threshold region

$$\sqrt{\hat{s}} \to 2m_t + m_H$$
$$\beta = \sqrt{1 - \frac{(2m_t + m_H)^2}{\hat{s}}} \to 0$$

Sudakov and Sommerfeld corrections

Combination of SCET and pNRQCD

hard : $k^{\mu} \sim \sqrt{\hat{s}}$, soft : $k^{\mu} \sim \sqrt{\hat{s}}\beta$, potential : $k^{0} \sim \sqrt{\hat{s}}\beta^{2}$, $\vec{k} \sim \sqrt{\hat{s}}\beta$, ultrasoft : $k^{\mu} \sim \sqrt{\hat{s}}\beta^{2}$, collinear : $(k_{+}, k_{-}, k_{\perp}) \sim \sqrt{\hat{s}}(1, \beta^{2}, \beta)$, anticollinear : $(k_{+}, k_{-}, k_{\perp}) \sim \sqrt{\hat{s}}(\beta^{2}, 1, \beta)$.

Factorization near threshold

Non-trivial cancellation of ultrasoft interactions at next-to-leading power

$$\hat{\sigma}_{ij} = \sum_{\alpha} \frac{1}{2\hat{s}} \int d\Phi_h d\omega \, H_{ij}^{\alpha}(\mu) \, J^{\alpha} \left(E_J - \frac{\omega}{2}, \vec{p}_J \right) S_{ij}^{\alpha}(\omega, \mu)$$
hard modes
potential modes
and soft modes
ultrasoft modes

	13 TeV LHC (pb)	14 TeV LHC (pb)
NLO	$0.493^{+5.8\%}_{-9.2\%}$	$0.597^{+6.1\%}_{-9.2\%}$
NLL'+NLO	$0.521^{+1.9\%}_{-2.6\%}$	$0.630^{+2.3\%}_{-2.6\%}$
K-factor	1.06	1.06

6% effect; big reduction of scale dependence

Extension to differential cross sections...

Summary

- Theoretical predictions for top quark pair differential cross sections have achieved remarkable precisions
 - Current state-of-the-art: NNLO+NNLL'+EW
- ► Still a small gap at low invariant mass near threshold
 - Use pNRQCD to derive a resummation formula for Coulomb corrections
 - Calculated relevant ingredients for NLP resummation
 - New result better compatible with data and has significant impact on top quark mass measurement
- Also studied Coulomb resummation for ttH production
- ➤ Many things to be done in the future: beyond NLP? tt̄+jets? tt̄H distributions?

祝赵老师八十大寿生日快乐!

