Pixel Vertex Detector Prototype MOST 2018-2023 (MOST2)

项目负责人: João Guimarães da Costa

Institute of High Energy Physics Chinese Academy of Sciences

Workshop on High Energy Circular Electron Positron Collider **European Edition** — Satellite Meeting 17 April 2019

Goals for today:

- Inform everyone about project
- Explore possible interesting extensions
- Identify areas where people could contribute
 - Contributions to baseline project —> need to be clarified soon
 - Contributions to extensions —> less time contrained

• Anual Meeting: April 29–30, 2019 (we are one year into the project)

CEPC CDR baseline conceptual detector

MDI Lumical

Beam pipes

L* = 2.2 m Cross angle = 33 mrad

Baseline Pixel Detector Layout 3-layers of double-sided pixel sensors

		R(mm)	z (mm)	$ cos \theta $	$\sigma(\mu m)$	Readout tir
Ladder 1	Layer 1	16	62.5	0.97	2.8	20
	Layer 2	18	62.5	0.96	6	1-10
Ladder 2	Layer 3	37	125.0	0.96	4	20
	Layer 4	39	125.0	0.95	4	20
Ladder 3	Layer 5	58	125.0	0.91	4	20
	Layer 6	60	125.0	0.90	4	20

Implemented in GEANT4 simulation framework (MOKKA)

- + ILD-like layout
- + Innermost layer: $\sigma_{SP} = 2.8 \mu m$
- + Polar angle $\theta \sim 15$ degrees

Low material budget ~ 0.15%X₀ per layer

CMOS pixel sensor (MAPS)

t time(us)

Tracker Detector – PFA Detector

12 cm

25 cm

Total Silicon area ~ 68 m²

R&D goals and activities

• Sensor R&D targeting:

	Specs
Single point resolution near IP:	< 3-5 μm
Power consumption:	< 100 mW/cm ²
Integration readout time:	<u>< 10-100 µs</u>
Radiation (TID)	> 1 MRad

• Sensors technologies:

Process

CMOS pixel sensor (CPS) TowerJazz CIS 0.18 µ **SOI** pixel sensor LAPIS 0.2 µm

• Institutions: CCNU, NWTU, Shandong, Huazhong Universities and IHEP (IPHC in Strasbourg, KEK)

Vertex Session: Tuesday, 10:50 am

	Smallest pixel size	Chips designed	Observations
m	22 × 22 µm²	2	Funded by MOST and
	16 × 16 µm²	2	Funded by NSFC

Task 2: Research Goal

- Produce a world class vertex detector prototype
 - Spatial resolution 3~5 µm (pixel detector)
 - Radiation hard (>1 MRad)
- Preliminary design of prototype • Three layer, module $\sim 1 \text{ cm} \times 6 - 12 \text{ cm}^2$

• Develop full size CMOS sensor for use in real size prototype

Typical module

Resolution

ATLAS/CMS upgrade (15 µm)

> Alice upgrade (8~10 µm)

This project (3~5 µm)

Task 2: Technical route and schedule

Use CMOS image sensor technology

Optimize pixel circuitry, reduce size

Special design and latest technology

Use carbon fiber, polyamide, graphene, and other light materials for mechanical structure

Robot automatic mechanical assembly

Baseline MOST2 Project and Extensions

Baseline

- Large CMOS chip
- Three layers "loosely defined"
- Tested on test beam

Extensions

• Highly desirable: Full size mechanical prototype • Think about new pixel detector layout, cable routing, cooling, readout electronics integration,

- detector installation and mounting
- Explore different sensor technologies/vendors (HV-CMOS/HR-CMOS)
- Investigate active/advance cooling methods
- Extend prototype to include forward pixel disks

• **Highly desirable:** Extended specifications for chip (closer to final requirements) Requires new people

Machine-detector interface (MDI) in circular colliders

High luminosities

Detector acceptance: > ± 150 mrad

Solenoid magnetic field limited: 2-3 Tesla

Head-on collision crossing angle: 33 mrad

Cooling of beampipe needed \rightarrow increases material budget near the interaction point (IP).

Final focusing quadrupoles (QD0) need to be very close to IP

MDI Assembly and Installation

Engineering studies started

Different scenarios under study

Needs close collaboration between detector designers and MDI engineers

MOST2 Project Schedule

Title	Effort		T+1y
 Mechanics design 	182w	•	
• 1.1) Module structure design	57w		
 1.2) Fabricated Module support structure 			
 1.3) Finish the design for pixel detector prototype 	125w	$\langle \ \rangle$	
 1.4) Manufacture support structure for detector prototype 		\searrow	
 2) CMOS sensor 	172w 2d	•	J
 2.1) sensor and frontend electronics functional block design 	19w	\searrow	
 2.2) First MPW run 		\square	
 2.3) Integrate all functional block 	65w	$\langle \rangle$	
 2.4) Second MPW 		\sim	
 2.5) Debug and optimize frontend electronics 	38w 2d		
 2.6) The third MPW 		\sim	
 2.7) Fiinsh design for full area, fully functionality chip 	50w		
 2.8) First engineering run 			
▼ 3) DAQ	233w	•	
 3.1) readout board for MPW runs 	119w		
 3.2) the design of DAQ for pixel detector prototype 	114w	$\langle \rangle$	
 3.3) Implement the DAQ design for prototype 		\sim	
▼ 4) Module	203w	•	
 4.1) Electronics design for module 	52w	$\langle \cdot \rangle$	
• 4.2) Assembly procedure	151w	\sim	
 4.3) Produce the modules 			
• 5) Test beam and irradiation	150w	$\langle \rangle$	
• 5.1) Testing for MPW runs	123w	\sim	
 5.2) beam test and data analysis 	27w	/	
 5.3) Publish paper and finish the final report 		\searrow	

第一年(2018.5-2019.4)

Main Milestones

- Task 1:
 - Low-field dipoles: physical and structural design of various small prototypes
 - Preliminary design of vacuum box and bellows, and electrostatic separator
 - Parameter selection of polarization working mode
- Task 2:
 - Preliminary designs of mechanics, readout electronics and ASIC
 - First ASIC MPW submitted
- Task 3:
 - Design of calorimeter prototype, and parameters optimized
 - Batch production of scintillator unit studied and started
 - Design front–end electronics

Outcome

Annual report

第二年(2019.5-2020.4)

Main Milestones

- Task 1:
 - Manufacture the high-precision low field dipole magnet small experimental prototype
 - Finish engineering design of vacuum box and bellows, and electrostatic separator
 - Simulation program for storage ring polarization is developed
- Task 2:
 - Engineering designs of mechanics structure
 - Second ASIC MPW submitted
- Task 3:
 - Simulate whole HCAL prototype and develop software framework
 - Carry out production of scintillator units
 - Prototype absorber and supporting structure are designed.

Outcome

Mid-term report

第三年(2020.5-2021.4)

Main Milestones

- Task 1:
 - Smal prototype of magnet fully tested
 - Design of magnet complete
 - Processing of the vacuum tube, the coating experiment device and the shielding bellows are completed
- Task 2:
 - Mechanical structure completed
 - Second ASIC MPW tested
 - ASIC design optimized and completed
- Task 3:
 - Batch production of readout electronics, development of data acquisition system
 - Development of beam test platform and cosmic ray test platform

Outcome

Annual report

第四年(2021.5-2022.4)

Main Milestones

- Task 1:
 - Completed the formal prototype of the dipole magnet and measurement system
 - Prototypes of vacuum tube and RF bellows completed
 - High pressure experiment was carried out on the electrostatic separator
- Task 2:
 - Silicon wafer processing of large area sensor submitted
 - Assembling and installing the prototype
- Task 3:
 - Integrated calorimeter prototype.
 - Carry out the cosmic ray test of the prototype

Outcome

Annual report

第五年(2022.5-2023.4)

Main Milestones

- Task 1:
 - Complete the performance test of dipole prototype
 - Complete tests of prototypes of vacuum tube, RF bellows and electrostatic separator
 - High pressure experiment was carried out on the electrostatic separator
- Task 2:
 - Test beam and data analysis
 - Finish assembling of prototype
- Task 3:
 - Test beam and data analysis
 - Finish assembling of prototype

Outcome

• Final report, paper and experimental equipment

CMOS Sensor and ASIC chip

- HR-CMOS Testing
- HR-CMOS: Any open areas available?
- HV–CMOS implementation
- Mechanics
 - Consulting role on mechanical design of ladders and structure
 - Design of any mechanical aspects
 - Investigation of cooling needs, R&D on cooling aspects
 - Adding forward disks to prototype project (needs full team)

Readout and DAQ

- Readout electronics and DAQ design
- Support test beam

Areas for contributions

