Optimization of VXD layout

J. Fu, C. Fu, Z. Liang, G. LI, B. Liu K. Wu, Z. Zhang

Impact Parameter Resolution:

$$\sigma_{r\phi} = a \oplus \frac{b}{p(\text{GeV})\sin^{3/2}\theta}$$

p the track momentum

the polar track angle

The 'a' term describes the intrinsic resolution of the vertex detector in the absence of multiple scattering and is independent of the track parameters.

The 'b' term reflects the effects of multiple scattering.

The parameters a = 5 μ m and b = 10 μ m \cdot GeV are taken as the design values for the CEPC vertex detector.

three concentric cylinders of doublelayer pixelated vertex detector.

	R (mm)	z (mm)	$ \cos \theta $	$\sigma(\mu{ m m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

Impact Parameter Resolution

Simulation Method

Get in different energy and same angle(85°)

Event:

Simulation tools: Mokka & Marlin

Energy = 5±0.5GeV & full angle

Energy = 5 ± 0.5 GeV & $\theta=85^{\circ}$

LDT for fast layout optimization

- A MATLAB based tool easy to understand, handle and modify
- Compare track parameter resolutions of various detector setups
- Optimize size and position of the track sensitive devices, and of the detector material budgets
- Start parameters for simulated tracks are user-defined
 - VTX Geometry: Radius, Thickness..
 - Transverse momentum range, range of polar angle θ , number of tracks from the vertex.
- Weakness: Difficult to define new geometry parameters according to personal requests, e.g. rotation angle between two ladders

01 LiC Detector-Toy (barrel) 02 LDC-basic-Japan 03 Version: 04 Vertex Detector (VTX)	120208													
06 Number of layers	: 14													
07 Description (optional)	: -Beamt				Verte	ex detector								
08 Names of the layers (opt.)	: XBT,	VTX1,	XVTX1,	XVTX2,	VTX2,	VTX3,	XVTX3,	XVTX4,	VTX4,	VTX5,	XVTX5,	VTX6,	XVTX6,	XVTXSHELL
09 Radii [mm]	: 14.5,	15.95,	16,	17,	18,	36.95,	37,	38,	39,	57.95,	58,	59,	60,	65
10 Upper limit in z [mm]	: 4225,	62.5,	62.5,	62.5,	62.5,	125,	125,	125,	125,	125,	125,	125,	125,	145
11 Lower limit in z [mm]	: -4225,	-62.5,	-62.5,	-62.5,	-62.5,	-125,	-125,	-125,	-125,	-125,	-125,	-125,	-125,	-145
12 Efficiency RPhi	: 0.	0.99.	0.	0.	0.99.	0.99.	0.	0.	0.99.	0.99.	0.	0.	0.99.	0
13 Efficiency 2nd coord. (eg. 2	z): -1													
14 Stereo angle alpha [Rad]	: -pi/2													
15 Thickness [rad. lengths]	: 0.0014.	0.00053.	0.00098.	0.00098.	0.00053.	0.00053.	0.00098.	0.00098.	0.00053.	0.00053.	0.00098.	0.00053.	0.00098.	0.0014
16 error distribution	: 0										,			
17 0 normal-sigma(RPhi) [1e-6m]		2.8.		6.		4.		4.		4.		4.		
18 sigma(z) [1e-6m]		2.8.		6.		4.		4.		4		4.		
19 1 uniform-d(RPhi) [1e-6m]				- /		-,				-,		-,		
20 d(z) [1e-6m]														

Compare detector setups as function of – momentum – polar angle

Comparison of different geometries

Optimization —— Next Step

- LDT:
 - Test more detector geometry parameters
 - Communicate with mechanic engineer for their requests
- Full simulation used to validate the fast results
- TkLayout as alternative way also for cross check, but some technical problems ...