
Alessandro Vicini - University of Milano                                                                                                                                              Beijing, November 20th 2019

Future progress with
EW precision calculations

Alessandro Vicini
University of Milano,  INFN Milano

Beijing, November 20th 2019

 1



Outline
 · motivations: precision tests of the Standard Model and searches for New Physics signals
 · discussion about the MW and the sin²θeff  determinations at a future e+e- collider
 
 · evolution of the precision measurement problem, from LEP to LHC to future e+e- colliders

 · measurement:  comparison of  “a” model against the data
                          which model? which Pseudo-Observables? 
                          which simulation code? EW input scheme?
                           → methodological challenges



Outline
 · motivations: precision tests of the Standard Model and searches for New Physics signals
 · discussion about the MW and the sin²θeff  determinations at a future e+e- collider
 
 · evolution of the precision measurement problem, from LEP to LHC to future e+e- colliders

 · measurement:  comparison of  “a” model against the data
                          which model? which Pseudo-Observables? 
                          which simulation code? EW input scheme?
                           → methodological challenges

                          we should first define
                          our weight scales and rulers!



Outline
 · motivations: precision tests of the Standard Model and searches for New Physics signals
 · discussion about the MW and the sin²θeff  determinations at a future e+e- collider
 
 · evolution of the precision measurement problem, from LEP to LHC to future e+e- colliders

 · measurement:  comparison of  “a” model against the data
                          which model? which Pseudo-Observables? 
                          which simulation code? EW input scheme?
                           → methodological challenges

 · development of new fixed-order calculations
                        of matching procedures of fixed- and all-order results
                           → technical challenges

                          we should first define
                          our weight scales and rulers!



Outline
 · motivations: precision tests of the Standard Model and searches for New Physics signals
 · discussion about the MW and the sin²θeff  determinations at a future e+e- collider
 
 · evolution of the precision measurement problem, from LEP to LHC to future e+e- colliders

 · measurement:  comparison of  “a” model against the data
                          which model? which Pseudo-Observables? 
                          which simulation code? EW input scheme?
                           → methodological challenges

 · development of new fixed-order calculations
                        of matching procedures of fixed- and all-order results
                           → technical challenges

                          we should first define
                          our weight scales and rulers!

how can we exploit the great expected experimental precision
and determine with corresponding precision some of the fundamental parameters of Nature?



Disclaimer

  · an important activity has taken place in the last 3 years,
     focussing on the theoretical issues relevant for the precision physics program 
     at future e+e- colliders, CEPC and FCC-ee
     and is documented in several reports, where complete lists of references can be found 
         arXiv:1703.01626   Physics beyond precision
         arXiv: 1809.01830   Standard Model Theory for the FCC Tera-Z stage
         arXiv:1811.10545   CEPC Conceptual Design Report
         arXiv:1905.05078   Theory report of the 11th FCC-ee workshop
         arXiv:1906.05739   Theoretical uncertainties to electroweak and Higgs-boson precision measurement at FCC-ee
         arXiv:1909.12245  Polarization and Centre-of-mass energy calibration at FCC-ee

 ·I am indebted with all the colleagues of the LHC EW-WG and my colleagues from Pavia
     for continuous  discussions on the MW and sin²θeff  determination at hadron colliders
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Motivations 
from the Fermi theory to the current best predictions of MW and sin²θ
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From the Fermi theory of weak interactions to the discovery of W and Z
Fermi theory of β decay             

muon decay

The properties of physics at the EW scale 
with sensitivity to the full SM and possibly to BSM via virtual corrections  ( Δr )
are related to a very well measured low-energy constant

Gµ
√

2
=

g2

8m2

W

(1 + ∆r)

The independence of the QED corrections of the underlying model (Fermi theory vs SM) allows 
   -  to define Gμ and to measure its value with high precision

                                              Gμ = 1.1663787(6)  10⁻⁵   GeV⁻²

   -  to establish a relation between Gμ and the SM parameters

QED corrections to Γμ         necessary for precise determination of Gμ

                                           computable in the Fermi theory (Kinoshita, Sirlin, 1959)

µ� ! ⌫µe
�⌫̄e

1

⌧µ
! �µ ! Gµ
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The SM predicts the existence of a new neutral current, different than the electromagnetic one
(Glashow 1961, Weinberg 1967, Salam 1968)

The observation of weak neutral current immediately allowed the estimate of the
value of the weak mixing angle in the correct range
GARGAMELLE, Phys.Lett. 46B (1973) 138-140

From the basic relation among the EW parameters it was immediately possible to estimate
the order of magnitude of the mass of the weak bosons, in the 80 GeV range
(Antonelli, Maiani, 1981)

The discovery at the CERN SPPS of the W and Z bosons and the first determination of their masses
allowed the planning of a new phase of precision studies accomplished with the construction of 
two e⁺e⁻ colliders (SLC and LEP) running at the Z resonance

The precise determination of MZ and of the couplings of the Z boson to fermions
and in particular the value of the effective weak mixing angle
allowed to establish a framework for a test of the SM at the level of its quantum corrections

There is evidence of EW corrections beyond QED with 26 σ significance!
Full 1-loop and leading 2-loop radiative corrections are needed to describe the data
      (indirect evidence of bosonic quantum effects)

From the Fermi theory of weak interactions to the discovery of W and Z
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The renormalisation of the SM and a framework for precision tests

• The Standard Model is a renormalizable gauge theory based on SU(3) x SU(2)L x U(1)Y

• The gauge sector of the SM lagrangian is assigned specifying (g,g’,v,λ) in terms of 4 measurable inputs

• More observables can be computed and expressed in terms of the input parameters, including the 

available radiative corrections, at any order in perturbation theory 

• The validity of the SM can be tested comparing these predictions with the corresponding 

experimental results

• The input choice (g,g’,v,λ) ↔ (α, Gμ, MZ, MH) minimises the parametric uncertainty of the predictions

• with these inputs, MW and the weak mixing angle are predictions of the SM, 
    to be tested against the experimental data

↵(0) = 1/137.035999139(31)

Gµ = 1.1663787(6)⇥ 10�5 GeV�2

mZ = 91.1876(21) GeV/c2

mH = 125.09(24) GeV/c2
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The W boson mass: theoretical prediction

LSM = LSM (α, Gµ, mZ ;mH ;mf ;CKM)
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�r = �r(↵, Gµ,mZ ,mH ;mf ;CKM)
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The W boson mass: theoretical prediction
Sirlin, 1980, 1984; Marciano, Sirlin, 1980, 1981;
van der Bij, Veltman, 1984; Barbieri, Ciafaloni, Strumia 1993;
Djouadi, Verzegnassi 1987; Consoli, Hollik, Jegerlehner, 1989; 
Chetyrkin, Kühn, Steinhauser, 1995;
Barbieri, Beccaria, Ciafaloni, Curci, Viceré,1992,1993; Fleischer, Tarasov, Jegerlehner, 1993;
Degrassi, Gambino, AV, 1996; Degrassi, Gambino, Sirlin, 1997;
Freitas, Hollik, Walter, Weiglein, 2000, 2003;
Awramik, Czakon, 2002; Awramik, Czakon, Onishchenko, Veretin, 2003; Onishchenko, Veretin, 2003
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combination of the W and Z mass counterterms in eq. (3.22) once the 1/ϵ poles in δ(1)m2
W

and δ(1)m2
Z are expressed in terms of MS quantities.

The two-loop counterterm δ(2)m2
Z includes also the contribution from the mixed γ Z

self-energy or

δ(2)m2
Z = Re

⎡

⎣A(1)
ZZ(m

2
Z) +A(2)

ZZ(m
2
Z) +

(
A(1)

γZ (m
2
Z)

m2
Z

)2
⎤

⎦ (3.25)

so that YMS up to the two-loop level reads

YMS = Y (1)

MS
+ Y (2)

MS
, (3.26)

Y (1)

MS
= Re

[
A(1)

WW (m2
W )

m2
W

− ĉ2
A(1)

ZZ(m
2
Z)

m2
W

]

MS

, (3.27)

Y (2)

MS
= Re

⎡

⎣A
(2)
WW (m2

W )

m2
W

− A(2)
ZZ(m

2
Z)

m2
Z

+

(
A(1)

γZ

m2
Z

)2
⎤

⎦

MS

. (3.28)

The one-loop contribution to YMS is reported in eq. (A.4) of the appendix. As before

we give the higher order terms via a simple formula:

Y h.o.
MS

(mZ) = 10−4 (y0 + y1ds+ y2dt+ y3dH + y4das) (3.29)

where dt = [(Mt/173.34GeV)2 − 1] and

y0 = −18.616753 y1 = 15.972019, y2 = −16.216781, y3 = 0.0152367, y4 = −13.633472 .

(3.30)

Eq. (3.29) includes, besides the Y (2)

MS
contribution from eq. (3.28), the complete O(α̂αs)

corrections, the leading three-loop O(α̂α2
sM

2
t /m

2
W ) contribution [7, 8] and the subleading

O(α̂3M6
t /m

6
W ) and O(α̂2αsM4

t /m
4
W ) [17, 18], and the four-loop O(α̂α3

sM
2
t /m

2
W ) contribu-

tion [19, 20]. It approximates the exact result to better than 0.075% for ŝ2 on the interval

(0.23− 0.232) when the other parameters in eq. (3.29) are varied simultaneously within a

3σ interval around their central values.

4 Results

In this section we report our results for α̂, sin2θ̂W and mW . All results are presented as

simple parameterizations in terms of the relevant quantities whose stated validity refers

to a simultaneous variation of the various parameters within a 3σ interval around their

central values given in table 1. As a general strategy for the evaluation of the two-loop

contributions, where ĉ2 can be identified with c2, we have replaced in all the two-loop terms

mW with mZ ĉ. This choice gives rise to the weakest µ-dependence in mW .

The two-loop computation of the MS electromagnetic coupling from eq. (3.3) and of

sin2θ̂W from eq. (1.4) can be summarized by the following parameterizations

α̂(µ) = a0 + 10−3
(
a1dH + a2dT + a3das + a4da

(5)
)

(4.1)

sin2θ̂W (µ) = s0 + s1dH + s2dt+ s3dHdt+ s4das + s5da
(5) (4.2)

– 11 –
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µ = mZ µ = Mt

a0 (128.13385)−1 (127.73289)−1

a1 -0.00005246 -0.00005267

a2 -0.01688835 0.02087428

a3 0.00014109 0.00168550

a4 0.22909789 0.23057967

µ = mZ µ = Mt

s0 0.2314483 0.2346176

s1 0.0005001 0.0005016

s2 -0.0026004 -0.0001361

s3 0.0000279 0.0000514

s4 0.0005015 0.0004686

s5 0.0097431 0.0098710

Table 2. Coefficients for the parameterization of α̂(µ) (left table, eq. (4.1) in the text) and
sin2θ̂W (µ) (right table, eq. (4.2) in the text).

where da(5) = [∆α(5)
had(m

2
Z)/0.02750−1] and the ai and si coefficients are reported in table 2

for two different values of the scale µ. Eq. (4.1) approximates the exact result to better

than 1.1× 10−7 (1.2× 10−7) for µ = mZ (µ = Mt), while eq. (4.2) approximates the exact

result to better than 5.1× 10−6 (6.2× 10−6) for µ = mZ (µ = Mt).

From our results on α̂ and ŝ2 it is easy to obtain the values of the g and g′ coupling

constants at the weak scale, usually identified with Mt. They can be taken as starting points

in the study of the evolution of the gauge couplings via Renormalization Group Equations

(RGE) in Grand Unified Models and in the analysis of the stability of the Higgs potential

in the SM. Ref. [57] reports the values of the gauge coupling constants at the µ = Mt

scale, g(Mt) = 0.64822 and g′(Mt) = 0.35760, obtained using a complete calculation of

the two-loop threshold corrections in the SM. Here we find g(Mt) = 0.647550 ± 0.000050

and g′(Mt) = 0.358521 ± 0.000091. The difference between the two results, which should

be a three-loop effect, is more sizable than expected. However, the results of ref. [57]

were obtained using as input parameters Gµ and the experimental values of mZ and mW ,

while our result is obtained with a different set of input parameters, i.e. Gµ, α and mZ .

In our calculation mW is a derived quantity calculable from eq. (1.5). Moreover, as shown

below, our prediction for mW is not in perfect agreement with the present experimental

determination and therefore the gauge couplings extracted using the two different sets

of inputs parameters show some discrepancy. Indeed, using our prediction for mW in the

results of ref. [57] instead of the experimental result, we find that the difference between the

g (g′) computed in the two methods is one order of magnitude smaller than the two-loops

correction and two orders smaller than the one-loop correction to g (g′).

The two-loop determination of the W mass in the MS framework from eq. (1.5) can

be parameterized as follows

mW = w0 + w1dH + w2dH
2 + w3dh+ w4dt+ w5dHdt+ w6das + w7da

(5) (4.3)

with dh = [(mH/125.15 GeV)2−1]. The wi coefficients are reported in table 3 for µ = mZ .

Two different cases are considered. In the left column the coefficients refer to the standard

case of a simultaneous variation of all parameters within a 3σ interval around their central

values. The right column applies to the case where all parameters but the Higgs mass

are varied within a 3σ interval while the latter is varied between 50 and 450GeV. In the
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The hadronic contribution can be obtained from the experimental data on the cross section

in e+e− → hadrons by using a dispersion relation. Two recent evaluations of ∆α(5)
had(m

2
Z)

report very consistent results: ∆α(5)
had(m

2
Z) = (275.7 ± 1.0) × 10−4 [52], ∆α(5)

had(m
2
Z) =

(275.0 ± 3.3) × 10−4 [53]. We use the latter as reference value in our calculation. The

Π(p)
γγ term in eq. (3.6) includes the top contribution to the vacuum polarization plus the

two-loop diagrams in which a light quark couples internally to the W and Z bosons. This

contribution, as well as ReΠ(5)
γγ (m2

Z), can be safely analyzed perturbatively.

The one-loop contribution to∆α̂p(mZ) ≡ ∆α̂(mZ)−∆α(5)
had(m

2
Z) is reported in eq. (A.3)

of the appendix. The higher order contributions to ∆α̂p(mZ) are presented here as a sim-

ple formula that parametrizes the full result in terms of the top and the Higgs masses, the

strong coupling, and ŝ2:

∆α̂p, h.o.(mZ) = 10−4 (b0 + b1ds+ b2dT + b3dH + b4das) (3.7)

where

ds =

(
ŝ2

0.231
− 1

)
, dT = ln

(
Mt

173.34GeV

)
,

dH = ln
( mH

125.15GeV

)
, das =

(
αs(mZ)

0.1184
− 1

)
(3.8)

with

b0 = 1.751181 b1 = −0.523813, b2 = −0.662710, b3 = −0.000962, b4 = 0.252884 .

(3.9)

Eq. (3.7) includes the O(α) contribution2 to Π(b)
γγ (0) + Π(l)

γγ(0) + Π(p)
γγ (0) plus the O(αs)

corrections to Π(p)
γγ (0) and the O(αs, α2

s) corrections to ReΠ(5)
γγ (m2

Z) [54]. It approximates

the exact result to better than 0.045% for ŝ2 in the interval (0.23− 0.232) when the other

parameters in eq. (3.7) are varied simultaneously within a 3σ interval around their central

values, given in table 1.

3.2 ∆r̂W

The radiative parameter ∆r̂W enters the relation between the Fermi constant and the

W mass. We recall that the Fermi constant is defined in terms of the muon lifetime τµ as

computed in an effective 4-fermion V −A Fermi theory supplemented by QED interactions:

1

τµ
=

G2
µm

5
µ

192π3
F

(
m2

e

m2
µ

)
(1 +∆q)

(
1 +

3m2
µ

5m2
W

)
, (3.10)

where F (ρ) = 1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ = 0.9981295 (for ρ = m2
e/m

2
µ) is the phase

space factor and ∆q = ∆q(1) +∆q(2) = (−4.234 + 0.036) × 10−3 are the QED corrections

computed at one [55] and two loops [56]. The calculation of ∆r̂W requires the subtraction

of the QED corrections, matching the result in the SM with that in the Fermi theory

2We alert the reader that our Πγγ is defined with the e20 coupling extracted, see eqs. (3.1), (3.2); therefore

the O(α) contribution is actually due to two-loop diagrams.

– 8 –

J
H
E
P
0
5
(
2
0
1
5
)
1
5
4

The hadronic contribution can be obtained from the experimental data on the cross section

in e+e− → hadrons by using a dispersion relation. Two recent evaluations of ∆α(5)
had(m

2
Z)

report very consistent results: ∆α(5)
had(m

2
Z) = (275.7 ± 1.0) × 10−4 [52], ∆α(5)

had(m
2
Z) =

(275.0 ± 3.3) × 10−4 [53]. We use the latter as reference value in our calculation. The

Π(p)
γγ term in eq. (3.6) includes the top contribution to the vacuum polarization plus the

two-loop diagrams in which a light quark couples internally to the W and Z bosons. This

contribution, as well as ReΠ(5)
γγ (m2

Z), can be safely analyzed perturbatively.

The one-loop contribution to∆α̂p(mZ) ≡ ∆α̂(mZ)−∆α(5)
had(m

2
Z) is reported in eq. (A.3)

of the appendix. The higher order contributions to ∆α̂p(mZ) are presented here as a sim-

ple formula that parametrizes the full result in terms of the top and the Higgs masses, the

strong coupling, and ŝ2:
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the full 2-loop EW result, higher-order QCD corrections, resummation of reducible terms
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The weak mixing angle(s): theoretical prediction(s)

• on-shell definition:
    Sirlin, 1980   

• MSbar definition:
    Marciano, Sirlin, 1980; Degrassi, Sirlin, 1991   

• the prediction of the weak mixing angle can be computed in different renormalisation schemes
    differing for the systematic inclusion of large higher-order corrections

sin2 ✓OS = 1� m2
W

m2
Z

definition valid to all orders

weak dependence on top-quark
corrections

Gμ

2
=

g2
0

8m2
W,0

⟶ ̂s2 ̂c2 =
πα

2Gμm2
Z (1 − Δ ̂r)

̂s2 ≡ sin2 ̂θ

Awramik, Czakon, Freitas, hep-ph/0608099�10

http://arxiv.org/abs/hep-ph/0608099
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The effective leptonic weak mixing angle: theoretical prediction
• parameterization of the full two-loop EW calculation + different sets of 3- and 4-loop corrections 

Awramik, Czakon, Freitas, hep-ph/0608099�11
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formula

sin2 θfeff = s0 + d1LH + d2L
2
H + d3L

4
H + d4∆α + d5∆t + d6∆

2
t + d7∆tLH (3.6)

+ d8∆αs
+ d9∆αs

∆t + d10∆Z

with

LH = log
MH

125.7GeV
, ∆t =

( mt

173.2GeV

)2
− 1,

∆αs
=

αs(MZ)

0.1184
− 1, ∆α =

∆α

0.059
− 1, ∆Z =

MZ

91.1876GeV
− 1

provides a good description of the full result in the parameter region (2.8). Values for the

coefficients are obtained by fitting (3.6) to a grid of 8750 data points.

Table 3 shows the result of a fit to a calculation that includes all known corrections:

• Complete one- and two-loop electroweak corrections,

(see refs. [21, 23, 27, 28, 30–32, 36] for the original references);

• Corrections of order O(ααs) to vector-boson self-energies [64–68], which we have

re-evaluated for this work;

• Non-factorizable O(ααs) Zbb̄ vertex contributions [69–74], which do not cancel in the

ratio vb/ab;

• Higher-loop corrections in the limit of a large top Yukawa coupling yt, of orders

O(αtα2
s ) [75, 76], O(α2

tαs), O(α3
t ) [77, 78], and O(αtα3

s ) [79–81] where αt ≡ y2t /(4π).

As indicated by the last column in the table, the largest deviation of the fit formulae

from the full result is O(few × 10−6), while for most of the parameter region in (2.8) the

agreement is better than 10−6. The careful reader may realize that the parameterization

for sin2 θbeff in table 3 deviates slightly from eqs. (20,22) in [36]. The difference is due to

the larger grid of data points used here. A fit formula is, obviously, not able to reproduce

the data points in a grid perfectly. The fitting aims to find the best average agreement

between the data points (which are generated with our full numerical calculation) and

the fit formula. A larger grid therefore can lead to some shifts of the coefficients. As a

consequence, the formula in [36] will probably be more accurate for input values within

the ranges in table 1 there. On the other hand, while the formula here may be a little less

accurate within these ranges, it covers a much larger range of input values.

It should also be noted that the fit formula for sin2 θℓeff in ref. [28] does not include the

O(αtα3
s ) corrections from refs. [79–81], but they are included in the formula presented here.

In table 4 it is shown that the technical accuracy of our fit formulae is adequate for

the expected experimental precision of several future e+e− colliders, although it will get

modified by anticipated future three-loop electroweak corrections.
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Observable s0 d1 d2 d3 d4 d5

sin2 θℓeff × 104 2314.64 4.616 0.539 −0.0737 206 −25.71

sin2 θbeff × 104 2327.04 4.638 0.558 −0.0700 207 −9.554

Observable d6 d7 d8 d9 d10 max. dev.

sin2 θℓeff × 104 4.00 0.288 3.88 −6.49 −6560 < 0.056

sin2 θbeff × 104 3.83 0.179 2.41 −8.24 −6630 < 0.025

Table 3. Coefficients for the parameterization formula (3.6) for the leptonic and bottom-quark
effective weak mixing angles. Within the ranges given in eq. (2.8), the formula deviates from the
full result up to the maximal amount given in the last column.

Observable max. dev. EXP now FCC-ee CEPC GigaZ

ΓZ [MeV] 0.04 2.3 0.1 0.5 0.8

sin2 θℓeff × 104 0.056 1.6 0.06 0.23 0.1

sin2 θbeff × 104 0.025 160 9 9 15

Table 4. Goodness of fit for some chosen EWPOs, compared with the envisaged precision mea-
surements for ΓZ and sin2 θℓeff (statistical errors), and sin2 θbeff (systematic errors) at the collider
projects FCC-ee Tera-Z [84], CEPC [85] and ILC/GigaZ [86]. The values of maximal deviations
are taken from tables 1 and 3. The entry “EXP now” gives the present experimental precision, as
known since LEP 1 [44].

4 Vector and axial-vector Z-boson form factors F
f
V

and F
f
A

The pseudo-observables discussed in the previous sections aim to be closely related to

actual observables, such as cross-sections, branching ratios, or asymmetries. On the other

hand, for some purposes it is also useful to have numerical results for the underlying vertex

corrections themselves [34], for example: (i) Inclusion of selected corrections from Beyond

Standard Model (BSM) physics, (ii) Estimations of magnitudes of selected single terms,

(iii) Partial cross-checks with other calculations. For such purposes, the form factors F f
V

and F f
A introduced in eq. (2.2) are needed explicitly.

Tables 5 and 6 show the numerical contributions of different orders of perturbation

theory to F f
V and F f

A. Here the form factors are always understood to include the appro-

priate (on-shell) counterterms to render them UV-finite. In table 5 these are computed

using the following input values:

MZ = 91.1876GeV, ΓZ = 2.4952GeV, ⇒ MZ = 91.1535GeV (4.1a)

MW = 80.385GeV, ΓW = 2.085GeV, ⇒ MW = 80.358GeV (4.1b)

MH = 125.1GeV, mt = 173.2GeV,

mMS
b = 4.2GeV, ∆α = 0.059, αs = 0.1184 (4.1c)

For table 6, on the other hand, the Fermi constant Gµ is used as an input instead of (4.1b),

– 9 –
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Figure 1-11. MSSM parameter scan for MW and sin
2 ✓`e↵ (see text). Today’s 68% C.L. ellipses (from

Ab

FB(LEP), A
e

LR(SLD) and the world average) are shown as well as the anticipated LHC and ILC/GigaZ
precisions, drawn around today’s central value.

based on Ae

LR
by SLD and Ab

FB
by LEP, corresponding to

Ab

FB
(LEP) : sin2 ✓`

exp,LEP

e↵
= 0.23221± 0.00029 , (1.14)

Ae

LR
(SLD) : sin2 ✓`

exp,SLD

e↵
= 0.23098± 0.00026 , (1.15)

sin2 ✓`
exp,aver.

e↵
= 0.23153± 0.00016 , (1.16)

where the latter one represents the average [3]. The first (second) value prefers a value of MSM

H
⇠

32 (437) GeV. The two measurements di↵er by about 3�. The averaged value of sin2 ✓`e↵ , as given in
Eq. 1.16, prefers MSM

H
⇠ 110 GeV. One can see that the current averaged value is compatible with the

SM with MSM

H
⇠ 125.6 GeV and with the MSSM. The value of sin2 ✓`e↵ obtained from Ae

LR
(SLD) clearly

favors the MSSM over the SM. On the other hand, the value of sin2 ✓`e↵ obtained from Ab

FB
(LEP) together

with the MW data from LEP and the Tevatron would correspond to an experimentally preferred region
that deviates from the predictions of both models. This unsatisfactory solution can only be resolved by
new measurements. The anticipated LHC accuracy for sin2 ✓`e↵ would have only a limited potential to
resolve this discrepancy, as it is larger than the current uncertainty obtained from the LEP/SLD average.
On the other hand, a Z factory, i.e. the GigaZ option, would be an ideal solution, as is indicated by the
red ellipse. The anticipated ILC/GigaZ precision of the combined MW –sin2 ✓`e↵ measurement could put
severe constraints on each of the models and resolve the discrepancy between the Ab

FB
(LEP) and Ae

LR
(SLD)

measurements. If the central value of an improved measurement with higher precision should turn out to
be close to the central value favored by the current measurement of Ab

FB
(LEP), this would mean that the

electroweak precision observables MW and sin2 ✓`e↵ could rule out both the SM and the most general version
of the MSSM.

Community Planning Study: Snowmass 2013

Baak et al., arXiv:1310.6708, Snowmass 2013, EW WG

Relevance of new high-precision measurement of EW parameters

The precision measurement of MW and sin²θeff  

with an error of 0.7 MeV and 0.000004

(5 MeV and 0.000100 at a hadron collider)

(formidable challenges!)

would offer a very stringent test of the SM likelihood

Alessandro Vicini - University of Milano                                                                                                                                                        Beijing, November 20th 2019
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Relevance of new high-precision measurement of EW parameters

The precision measurement of MW and sin²θeff  

with an error of 0.7 MeV and 0.000004

(5 MeV and 0.000100 at a hadron collider)

(formidable challenges!)

would offer a very stringent test of the SM likelihood

In the case a BSM particle had been discovered
a very precise MW value would offer
a strongly discriminating tool about the mass spectra
in BSM models

different dependence on the neutralino mass M₂ 
of the MW prediction in the MSSM and NMSSM
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Relevance of new high-precision measurement of EW parameters
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Figure 8. Two-dimensional 68% (dark) and 95% (light) probability contours for V and f (from
darker to lighter), obtained from the fit to the Higgs-boson signal strengths and the EWPO.

Result 95% Prob. Correlation Matrix

W 1.00± 0.05 [0.89, 1.10] 1.00

Z 1.07± 0.11 [0.85, 1.27] �0.17 1.00

f 1.01± 0.11 [0.80, 1.22] 0.41 �0.14 1.00

Table 13. SM-like solution in the fit of W , Z , and f to the Higgs-boson signal strengths.

with custodial symmetry. We notice that theoretical predictions are symmetric under

the exchanges {W , f} $ {�W , �f} and/or Z $ �Z , where Z can flip the

sign independent of W , since the interference between the W and Z contributions to the

vector-boson fusion cross section is negligible. Hence we have considered only the parameter

space where both W and Z are positive. In this case, we ignore EWPO in the fit, since

setting W 6= Z generates power divergences in the oblique corrections, indicating that the

detailed information on the UV theory is necessary for calculating the oblique corrections.

We also consider the case in which we only lift fermion universality and introduce

di↵erent rescaling factors for charged leptons (`), up-type quarks (u), and down-type

quarks (d), while keeping a unique parameter V for both HV V couplings. In this case,

from the Higgs-boson signal strengths we obtain the constraints on the scale factors pre-

sented in table 14 and in the top plots of figure 10. By adding the EWPO to the fit, the

constraints become stronger, as shown in table 15 and in the bottom plots of figure 10.

In this case, the Higgs-boson signal strengths are approximately symmetric under the ex-

changes ` $ �`, d $ �d and/or {V , u} $ {�V , �u}. These approximate

symmetries follow from the small e↵ect of the interference between tau and/or bottom-

quark loops with top-quark/W loops in the Higgs-boson decay into two photons, as well

as the relatively small interference between bottom- and top-quark loops in gluon-fusion,

for |V,u,d,`| ⇠ 1. Moreover, we find that negative values of u are disfavoured in the fit.

Hence, in figure 10 we consider only the parameter space where all ’s are positive. Again,
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Electroweak precision constraints at present and future colliders Jorge de Blas
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Figure 1: (Left) 68%, 95%, and 99% probability contours for the S and T parameters. (Center) 68% and
95% probability contours for S and T fixing U = 0, together with the individual constraints from MW , the
asymmetry parameters sin2 q lept

eff , P
pol
t , A f , and A

0, f
FB with f = `,c,b, and GZ . (Right) Expected sensitivities to

S, T, U at future colliders. Different shades of the same colour correspond to results including or neglecting
the future theoretical uncertainties.

the future SM theoretical uncertainties would still be a limiting factor, reducing the sensitivity to
S, T, U in some cases by up to a factor of 2.

Result Correlation Matrix

S 0.09±0.10 1.00
T 0.10±0.12 0.86 1.00
U 0.01±0.09 �0.54 �0.81 1.00

Table 2: Results of the fit for the oblique parameters
S, T , and U .

Result Correlation Matrix

S 0.10±0.08 1.00
T 0.12±0.07 0.86 1.00

Table 3: Results of the fit for the oblique pa-
rameters S and T , fixing U = 0.

Motivated by the �2.6 s discrepancy in A
0,b
FB, it is interesting to consider the possibility that

the leading NP effects in EWPO manifest in extra contributions to the Zb̄b couplings,

g
b

a
= g

b SM
a

+dg
b

a
, a = L,R or V,A. (3.1)

The results of the fit to EWPD provide four solutions for dg
b

a
, but two of them are disfavored by the

heavy flavour LEP2 data. The two surviving solutions are characterized by a relatively small dg
b

L
,

due to the Rb constraints, and a sizable contribution to dg
b

R
, needed to solve the A

0,b
FB anomaly. In

Tables 4 and 5 and Fig. 2 we show the results for the solution that is closer to the SM. While current
data is barely consistent with the SM at 95% probability, the order of magnitude improvement at
the FCCee or CepC —also shown in Fig. 2— would allow to confirm whether the A

0,b
FB is a probe

of NP or simply an outlier.
Next we study the EWPD constraints on NP models whose leading observable effects appear

in modifications of the Higgs couplings (see, e.g., Ref. [6]). Assuming the new dynamics respects
custodial symmetry, the deviations in the Higgs to vector boson couplings can be parameterized by
a single scale factor kV (kV = 1 in the SM). This induces the leading effects in EWPO, in the form
of logarithmic contributions to the S and T parameters [7]. From the fit results in the left panel of
Fig. 3,

kV = 1.02±0.02, and kV 2 [0.98, 1.07] at 95% probability. (3.2)
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Figure 2: (Left) 68%, 95%, and 99% probability contours for the dg
b

V
, dg

b

A
couplings. (Center) 68%

and 95% probability contours for dg
b

R
, dg

b

L
, together with the constraints from R

0
b
, A

0
FB

and Ab. (Right)
Expected sensitivities to dg

b

R
, dg

b

L
at future colliders. Different shades of the same colour correspond to

results including or neglecting the future theoretical uncertainties.

Result Correlation Matrix

dg
b

R
0.016±0.006 1.00

dg
b

L
0.002±0.001 0.90 1.00

Table 4: Results of the fit for the shifts in the left-
handed and right-handed Zbb̄ couplings.

Result Correlation Matrix

dg
b

V
0.018±0.007 1.00

dg
b

A
�0.013±0.005 �0.98 1.00

Table 5: Results of the fit for the shifts in the vector
and axial-vector Zbb̄ couplings.

Vκ
0.95 1 1.05 1.1

Pr
ob

ab
ilit

y 
de

ns
ity

0

10

20

68% Probability

95% Probability

HEP fit

Vκ
0.8 0.9 1 1.1 1.2

f
κ

0.6

0.8

1

1.2

1.4
EW+Higgs
EW
Higgs

HEP fit

 
 

Vκ
 

U
nc

er
ta

in
ty

3−10

2−10

1−10

 

Today
HL-LHC
ILC
CepC
FCCee (Z,unpolarized)
FCCee (Z+WW+tt)

HEPfit

 

Figure 3: (Left) 1D probability distribution for kV derived from EWPD. (Center) Comparison of the 68%
and 95% probability contours for rescaled Higgs couplings to fermions (k f ) and vector bosons (kV ), from
EWPO and Higgs signal strengths (see [1] for details). (Right) Expected sensitivities to kV at future collid-
ers. Different shades of the same colour correspond to results including or neglecting the future theoretical
uncertainties.

We also find a preference for kV > 1, with 90% of probability. This imposes significant constraints
on composite Higgs models, which generate values of kV < 1, unless extra contributions to the
oblique parameters are present. It is noteworthy that, as can be seen in the central panel of Fig. 3,
the EWPO constraints still dominate the LHC run 1 bounds from Higgs signal strengths [1].

Finally, we consider the general parametrization of NP effects using the SM effective field
theory up to dimension 6. Assuming that the fields and symmetries of nature at energies below
a given cutoff L are those of the SM, the most general Lorentz and SM gauge invariant theory
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A precise measurement of MW  and of sin²θeff  constrains 
several dim-6 operators contributing to Higgs and gauge interaction vertices.
Today still one of the strongest constraints
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Λ: Cut-off of the EFT
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Materials for the talk presented at the FCC physics meeting on Feb. 19 2018.
EFT: E↵ects suppressed by �

q

⇤

�d�4

q = v, E < ⇤

1 Expected precision for EWPO at FCC-ee

Observable Expected uncertainty (Relative uncertainty)

MZ [GeV] 10
�4

(10
�6

)

�Z [GeV] 10
�4

(4 ⇥ 10
�5

)

�
0
had [nb] 5⇥10

�3
(10

�4
)

Re 0.006 (3 ⇥ 10
�4

)

Rµ 0.001 (5 ⇥ 10
�4

)

R⌧ 0.002 (10
�4

)

Rb 0.00006 (3 ⇥ 10
�4

)

Rc 0.00026 (15 ⇥ 10
�4

)

Table 1: Expected sensitivities to Z-lineshape parameters and normalized partial decay widths.
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Effects  
suppressed by

Truncate at d=6: 59 types of operators (2499 counting flavor) 
W. Buchmüller, D. Wyler, Nucl. Phys. B268 (1986) 621
C. Arzt, M.B. Einhorn, J. Wudka, Nucl. Phys. B433 (1995) 41 
B.Grzadkowski, M.Iskrynski, M.Misiak, J.Rosiek, JHEP 1010 (2010) 085

First complete basis, aka Warsaw basis

February 18, 2018

EFT analyses with FCC precision

J. de Blasa†

aINFN, Sezione di Roma, Piazzale A. Moro 2, I-00185 Rome, Italy

Abstract

Materials for the talk presented at the FCC physics meeting on Feb. 19 2018.

1 EFT

E↵ects of EFT interactions suppressed by

�
q

⇤

�d�4

q = v, E < ⇤

M
2
Z

(1TeV)2
⇠ 0.8%

M
4
Z

(1TeV)4
⇠ 0.007%

†E-mail: Jorge.DeBlasMateo@roma1.infn.it

1

Jorge de Blas 
INFN - University of Padova

FCC Week 2018 
Amsterdam, April 11, 2018

The dimension-6 SMEFT

• The dimension 6 SMEFT: 

• LO new physics effects “start” at dimension 6  

• With current precision, and assuming Λ~TeV, sensitivity to d>6 is small

Power counting: EFT expansion in canonical dimension of operators
Particles and symmetries of the low-energy theory: SM
Assumes new physics is heavy + decoupling

de Blas et al, arXiv:1608.01509
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High-precision measurements 
MW and sin²θ determination at colliders
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Projections based on the expected statistics and systematics

How can we keep the theoretical systematics under control?
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sin²θeff determination at future colliders: which strategies?
Which is our primary goal?

         ·Consistency check of the SM          or          ·Indirect search for New Physics signals
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                 allows to avoid the introduction of pseudo observables
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sin²θeff determination at future colliders: which strategies?
Which is our primary goal?

         ·Consistency check of the SM          or          ·Indirect search for New Physics signals

Indirect search for New Physics signals

    ·The pseudo observable decomposition of the Z resonance  

                         it allows to establish a direct link to New Physics entering via the oblique corrections

    ·Fit of the data in the SMEFT,  with sin²θeff and all the Wilson coefficients as input parameters

Consistency check of the SM

      ·Fit of the data in the SM and comparison with the SM theoretical prediction

                 An EW scheme with sin²θeff as input parameter 

                 allows to avoid the introduction of pseudo observables

                 in favour of a direct fit of the observables in the SM

Pro’s and con's

Z resonance pseudo observable decomposition  →  highly developed since LEP, most mature approach

Fit in full (SM or SMEFT) with sin²θeff as input     → direct relation of observables and parameters 

                                                                            clear estimate of the systematic uncertainties 😊

                                                                            more development needed beyond NLO-EW 😧



Observables quantities accessible via counting experiments
                    cross sections and asymmetries

Pseudo-Observables quantities that are functions of the cross section and asymmetries
                               require a model to be properly defined
                              ·the Z boson mass at LEP as the pole of the Breit-Wigner resonance factor
                              ·any cross section subtracted of QED/QCD universal corrections
                              ·the Z boson decay widths

Template fit ·several histograms describing a differential distribution, computed in a given model,  with 
                     the highest available theoretical accuracy and degree of realism in the detector simulation
                     letting the fit parameter (e.g. MW) vary in a range
                  ·the histogram that best describes the data selects the preferred, i.e. measured, MW value
                  ·the result of the fit depends 
                        1) on the chosen model
                        2) on the hypotheses used to compute the templates (→ theoretical systematic errors)
                  ·accurate calculations, properly implemented in Monte Carlo event generators
                       are needed to reduce this systematic error

Model dependency ·new physics might affect the kinematical distributions via virtual corrections
                               (whose impact depends on the specific formulation of the event generator)
                               how different is the result for MW with MSSM templates   vs SM templates ?

Vocabulary
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Fit of observables, parameter determination and EW input schemes
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𝒯(k)
i

𝒪i

Parameter determination:
The templates are theoretical predictions, functions only of the lagrangian input parameter
     e.g. in the SM               

We choose a set of experimental quantities (EW inputs) to express the lagrangian couplings.
All the other pseudoobservables and parameters are predictions,
           which can be tested but not used as fit parameters.

    examples:    at LEP1 the choice  (α, Gμ, MZ, MH) as inputs allowed to determine MZ,

                      at LEP2  for the MW determination introduction of the (Gμ, MW, MZ, MH) scheme

                                   (no-one would have used (α, Gμ, MZ, MH) as input scheme to fit MW)

    in these two schemes sin²θeff is a prediction and can not be used as a fit parameter!

3 criteria for the choice of an input scheme
     i) we have to fit one of the input param’s
     ii) the input param’s guarantee the minimal parametric uncertainty
     iii) the input param’s reabsorb, already in lowest order, some classes of large radiative corrections

𝒯 = 𝒯(g, g′ �, v; λ; mf; CKM)
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The LEP/SLD legacy: sin²θeff determination; two distinct approaches (1)

 ·SM prediction of xsecs and asymmetries computed as a function of (α, Gmu, MZ; mt, MH)

 ·mt and MH fit to the data to maximise the agreement

 ·sin²θeff has then been computed in the SM using Zfitter/TOPAZ0 with best mt and MH values

    and compared with the pseudo observable determination (next slide)
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A. Freitas, J. Gluza, S. Jadach

Fig. C.1: Construction of EWPOs in data analysis of the LEP

Ref. [193], O(↵1
) QED analytical calculations, and the effective Born amplitudes of the EWPO scheme. As

already noticed and strongly emphasized in Ref. [114], the sticking point was that these scenarios could be
invalidated by the initial–final-state interference (IFI) contributions, for various reasons. For instance, the con-
volution of the ISR structure function involves integration over the effective mass

p
s0 after ISR and before

final-state radiation (FSR). If IFI is switched on, this variable loses its physical meaning. The solution was to
introduce an acollinearity cut, which approximately limited s0, accompanied with a cut-off of the angle of one
of the final fermions, leaving the angle of the other one uncontrolled.

In the (B)!(C) transition in Fig. C.1, an effective Born term is used in the fitter programs instead
of complete EW corrections. The differential distribution of the effective Born term is obtained from spin
amplitudes of the e

�
e
+ ! f f̄ process, with the carefully defined (real) effective coupling constants of � and

Z bosons to electrons and other fermions f = e, µ, ⌧, u, d, s, c, b. In fact, the differential distribution of the
effective Born term in Eq. (1.34) of Ref. [16] is in one-to-one correspondence with the spin amplitudes of
Eq. (C.45), or the Born version of Eqs. (C.70)–(C.71) and (C.72)–(C.75), with adjustable parameters being
MZ, �Z, ↵em(MZ) and Z couplings for each fermion type, af and vf .

This one-to-one correspondence of the parameters of the effective Born term at the amplitude level, that
is, four couplings per fermion, and the mass and width of the Z boson – which will be referred to as EW
‘pseudo-parameters’ (EWPPs)10 – means, in practice, that from their values one easily obtains partial widths
proportional to a2f + v2f , hadronic peak cross-sections, and all possible charge and spin asymmetries, being
simple functions of vf/af (Eqs. (1.37), (1.45), and (1.51)-(1.54) in Ref. [16]), either during the data fitting
procedure or when obtaining final or fitted EWPOs for each experiment.

The list of EWPOs in Ref. [16] representing LEP/SLC data consists of MZ, �Z, �(0)
had, R(0)

f , A(0),f
FB ,

f = e, µ, ⌧, c, b (see Tables 2.5, 2.13, and 5.10 therein). The EWPOs created at stage (C) separately for each
LEP and SLD collaboration were then combined into common EWPOs, with the experimental error reduced
by roughly a factor of two.11 The number of the combined EWPOs was still much greater than the number of

10The prefix ‘pseudo-’ emphasizes the fact that these parameters are different from the Standard Model Lagrangian
parameters.

11In principle, EWPPs can be re-derived from EWPOs after combining over experiments.
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· SM prediction of cross sections and asymmetries and comparison with data (SM test)
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 ·parameterisation of xsecs and asymmetries at the Z resonance in terms of pseudoobservables (≠SM)

 ·fit of the Z-resonance model to the data   → experimental values of the pseudoobservables

 ·tree-level relation between the experimental Z decay widths (subtracted of QED/QCD effects)

                                            and the ratio gv/ga 

       → algebraic solution for sin²θeff → effective angle

mZ, ΓZ, σ0
had, R0

e , R0
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FB

The LEP/SLD legacy: sin²θeff determination; two distinct approaches (2)
A. Freitas, J. Gluza, S. Jadach

Fig. C.1: Construction of EWPOs in data analysis of the LEP

Ref. [193], O(↵1
) QED analytical calculations, and the effective Born amplitudes of the EWPO scheme. As

already noticed and strongly emphasized in Ref. [114], the sticking point was that these scenarios could be
invalidated by the initial–final-state interference (IFI) contributions, for various reasons. For instance, the con-
volution of the ISR structure function involves integration over the effective mass

p
s0 after ISR and before

final-state radiation (FSR). If IFI is switched on, this variable loses its physical meaning. The solution was to
introduce an acollinearity cut, which approximately limited s0, accompanied with a cut-off of the angle of one
of the final fermions, leaving the angle of the other one uncontrolled.

In the (B)!(C) transition in Fig. C.1, an effective Born term is used in the fitter programs instead
of complete EW corrections. The differential distribution of the effective Born term is obtained from spin
amplitudes of the e

�
e
+ ! f f̄ process, with the carefully defined (real) effective coupling constants of � and

Z bosons to electrons and other fermions f = e, µ, ⌧, u, d, s, c, b. In fact, the differential distribution of the
effective Born term in Eq. (1.34) of Ref. [16] is in one-to-one correspondence with the spin amplitudes of
Eq. (C.45), or the Born version of Eqs. (C.70)–(C.71) and (C.72)–(C.75), with adjustable parameters being
MZ, �Z, ↵em(MZ) and Z couplings for each fermion type, af and vf .

This one-to-one correspondence of the parameters of the effective Born term at the amplitude level, that
is, four couplings per fermion, and the mass and width of the Z boson – which will be referred to as EW
‘pseudo-parameters’ (EWPPs)10 – means, in practice, that from their values one easily obtains partial widths
proportional to a2f + v2f , hadronic peak cross-sections, and all possible charge and spin asymmetries, being
simple functions of vf/af (Eqs. (1.37), (1.45), and (1.51)-(1.54) in Ref. [16]), either during the data fitting
procedure or when obtaining final or fitted EWPOs for each experiment.

The list of EWPOs in Ref. [16] representing LEP/SLC data consists of MZ, �Z, �(0)
had, R(0)

f , A(0),f
FB ,

f = e, µ, ⌧, c, b (see Tables 2.5, 2.13, and 5.10 therein). The EWPOs created at stage (C) separately for each
LEP and SLD collaboration were then combined into common EWPOs, with the experimental error reduced
by roughly a factor of two.11 The number of the combined EWPOs was still much greater than the number of

10The prefix ‘pseudo-’ emphasizes the fact that these parameters are different from the Standard Model Lagrangian
parameters.

11In principle, EWPPs can be re-derived from EWPOs after combining over experiments.
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The sin²θeff determination from pseudo-observables at LEP depended on:

         ·high precision in the measurement of the xsec e+e- → hadrons

         ·separation of individual flavours

         ·deconvolution of large universal QED/QCD corrections (Zfitter/TOPAZ0)

         ·subtraction of SM non-factorisable contributions (Zfitter/TOPAZ0)

                    checked to be small, weakly dependent on sin²θeff  

                                          and precise compared to the LEP/SLD precision target

         → factorised expression (initial)x(final) form factors

                           Aexp
FB (m2

Z) − 𝒜nonfact =
3
4

𝒜e𝒜f
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The LEP/SLD legacy: sin²θeff determination; two distinct approaches (2bis)
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The LEP/SLD legacy: sin²θeff determination; two distinct approaches (2bis)

 ·The LEP precision justified the above assumptions

 · The model used to describe the Z resonance in terms of factorised pseudo observable (≠SM)

          contains the effective weak mixing angle as free parameter

 · The analysis was to a large extent model independent, 

     for all those New Physics effects appearing in the oblique corrections
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The LEP/SLD legacy: sin²θeff determination; two distinct approaches (2bis)

 ·The LEP precision justified the above assumptions

 · The model used to describe the Z resonance in terms of factorised pseudo observable (≠SM)

          contains the effective weak mixing angle as free parameter

 · The analysis was to a large extent model independent, 

     for all those New Physics effects appearing in the oblique corrections

At future e+e- colliders we (still) have to demonstrate that all the above hypotheses hold

                                    we possibly need 3-loop calculation to control the subtraction terms

                                         and to define the pseudoobservables
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Alternative EW scheme, using (Gmu, MZ, sin²θeff) as inputs of the gauge sector

       it has been first developed in the framework of the LHC analyses

                     (need to consider extended lepton-pair invariant mass intervals

                       where non-factorisable corrections can be much more important than at q²=MZ² )

        it can be immediately applied to any e+e- collider study

        it allows to express any observable as 

                     

       so that templates as a function of sin²θeff  can be easily generated

𝒪 = 𝒪(Gμ, mZ, sin2 θlep
eff )



An electroweak scheme with (Gmu, MZ, sin²θeff) as inputs

2

Input scheme definitions

A set of three commonly adopted SM lagrangian in-
put parameters in the gauge sector is e,MW ,MZ , which
have to be expressed in terms of three measured quanti-
ties, whose choice defines a renormalization scheme. The
relation between e,MW ,MZ and the reference measured
quantites has to be evaluated at the same perturbative
order of the scattering amplitude calculation at hand and
allows to fix the renormalization conditions. The usual
set of reference measured quantities are: ↵,MW ,MZ ,
which defines the on-shell scheme; ↵(MZ),MW ,MZ ,
which is a variant of the on-shell scheme which reabsorbs
the large logarithmic contributions due to the running of
the electromagnetic coupling from the scale 0 to MZ [16];
Gµ,MW ,MZ , which defines the Gµ scheme and is partic-
ularly suited to describe Drell-Yan processes at hadron
colliders because it allows to include a large part of the
radiative corrections in the LO predictions, guaranteeing
a good convergence of the perturbative series. For a de-
tailed description of these schemes cfr. ref. [17]. The
presence of MW among the input parameters is a nice
feature in view of a direct MW measurement at hadron
colliders via a template fit method, as described above.
On the other hand, these schemes are not suited for
high precision predictions, because of the “large” para-
metric uncertainties stemming from the present experi-
mental precision on the knowledge of MW . In fact, for
NC DY precise predictions, a LEP style scheme with
↵, Gµ,MZ would be preferred. However, in view of a
direct SM determination of the quantity sin2 ✓`eff , also

this scheme has its own shortcomings, because sin2 ✓`eff
is a calculated quantity and can not be treated as a
fit parameter. With the aim of a direct sin2 ✓`eff SM
determination, we discuss an alternative scheme, which
includes the weak mixing angle as an input parameter,
sin2 ✓, together with e and MZ . The experimental refer-
ence data are the Z boson mass value measured at LEP,
the fine structure constant ↵ and sin2 ✓`eff as defined
at LEP at the Z resonance. An additional possibility
discussed in the following is to replace ↵ with Gµ. We
will refer to these two choices as the (↵,MZ , sin

2 ✓`eff )

and the (Gµ,MZ , sin
2 ✓`eff ) input schemes. At tree level

sin2 ✓ = sin2 ✓`eff . The quantity sin2 ✓`eff is defined in
terms of the vector and axial-vector couplings of the Z
boson to leptons glV,A, measured at the Z boson peak, or

alternatively the chiral electroweak couplings glL,R and
reads (at tree level) [18]:

sin2 ✓leff =
I l3
2Ql

✓
1�

glV
glA

◆
=

I l3
Ql

✓
�glR

glL � glR

◆
, (1)

where

glL =
I l3 � sin2 ✓leff Ql

sin ✓leff cos ✓
l
eff

, glR = �
sin ✓leff
cos ✓leff

Ql . (2)

I l3 = ±
1
2 is the third component of the weak isospin and

Ql is the electric charge of the lepton in units of the
positron charge.

Renormalization

We implement the one loop renormalization of the
three input parameters by splitting the bare ones into
renormalized parameters and counterterms

M2
Z,0 = M2

Z + �M2
Z (3)

sin2 ✓0 = sin2 ✓`eff + � sin2 ✓`eff (4)

e0 = e(1 + �Ze) (5)

where the bare parameters are denoted with subscript
0. The counterterms �M2

Z and �Ze are defined as in the
usual on-shell scheme. Complete expressions are given
in Eqs. (3.19) and (3.32) of Ref. [19]. The counterterm
� sin2 ✓`eff is defined by imposing that the tree-level re-

lation Eq. (1) holds to all orders. Considering the Zll̄
vertex, the couplings gfL,R, neglecting the masses of the

lepton l, are replaced by the form factors GL,R(q2) [9]
once radiative corrections are accounted for. The e↵ec-
tive weak mixing angle has been defined at LEP/SLD by
taking the form factors at q2 = M2

Z : QUESTION: in

the LEP definition the real parts were taken in

numerator and denominator separately (e.g. Eq.

12 of Bardin-Passarino-Gruenewald)

sin2 ✓`eff ⌘
I l3
Ql

Re

✓
�G

l
R(M

2
Z)

Gl
L(M

2
Z)� Gl

R(M
2
Z)

◆
. (6)

The form factors Gi can be computed in the SM in any
input scheme that does not contain sin2 ✓`eff as input
parameter, yielding in turn, via Eq.(6), a prediction for
sin2 ✓`eff , as discussed at length in Refs. [20, 21].
In this paper instead we consider the weak mixing an-

gle as an input parameter. In order to fix its renormal-
ization condition, we write the relation between the bare
coupling and its expression in terms of form factors at
a given perturbative order, with bare masses and cou-
plings.

sin2 ✓0 =
If3
Qf

Re

 
�G

f
R(M

2
Z)

G
f
L(M

2
Z)� G

f
R(M

2
Z)

!�����
0

. (7)

We replace all the bare couplings with the renormalized
ones and the associated counterterms, Eqs. (3-5):

sin2 ✓`eff +� sin2 ✓`eff =
I l3
Ql

Re

✓
�glR � �glR

glL � glR + �glL � �glR

◆
.

(8)
where �glL,R represent the e↵ect of radiative corrections,
expressed in terms of renormalized quantities and related
counterterms. We do not consider NLO QED corrections

The weak mixing angle is related to the left- and right-handed (vector and axial-vector)
       couplings of the Z boson to fermions

The radiative corrections (expressed with bare constants) yield left- and right-handed form factors; 
we focus on the scale q²=MZ²  

3

because they factorize on form factors and therefore do
not a↵ect the sin2 ✓leff definition. The e↵ective weak
mixing angle is defined to all orders by the request that
the measured value coincides with the tree-level expres-
sion; in other words, the radiative corrections that could
be reabsorbed into a redefinition of an e↵ective mixing
angle are exactly cancelled, order by order, by the coun-
terterm, which reads, at O(↵)

� sin2 ✓`eff = �
1

2

g`Lg
`
R

(g`L � g`R)
2
Re

✓
�g`L
g`L

�
�g`R
g`R

◆
. (9)

From the O(↵) corrections to the vertex Z ! `+`� we
obtain

� sin2 ✓`eff
sin2 ✓`eff

=
cos ✓`eff
sin ✓`eff

Re⌃AZ
T (M2

Z)

M2
Z

(10)

+

✓
1�

Q`

I`3
sin2 ✓`eff

◆⇥
�Z`

L + �V L
� �Z`

R � �V R
⇤
.

where ⌃AZ
T (M2

Z) contains the fermionic and bosonic con-
tributions to the �Z self-energy corrections, while the
second line of Eq. (10) stems from the vertex correc-
tions and counterterm contributions. We remark that
the �Z self-energy does not contain enhanced terms pro-
portional to m2

t . The bosonic contributions in Eq. (10)
form a gauge invariant set because they are a linear com-
bination of the corrections to the left- and right-handed
components of the Z decay amplitude into a lepton pair.
The expression of ⌃AZ

T (M2
Z) and �Zl

L/R are given in

Eqs. (B.2) and (3.20) of Ref. [19], respectively. In �Zl
L/R

we suppressed the lepton family indices. The vertex cor-
rections �V L/R are given by

�V L =
�
g`L

�2 ↵

4⇡
Va

�
0,M2

Z , 0,MZ , 0, 0
�

+
1

2s2W

g⌫L
g`L

↵

4⇡
Va

�
0,M2

Z , 0,MW , 0, 0
�

�
cW
sW

1

2s2W

1

g`L

↵

4⇡
Vb

�
0,M2

Z , 0, 0,MW ,MW

�

�V R =
�
g`R

�2 ↵

4⇡
Va

�
0,M2

Z , 0,MZ , 0, 0
�

(11)

and the vertex functions Va and Vb are given in Eqs. (C.1)
and (C.2) of Ref. [19], respectively.

The renormalization condition that the mea-

sured e↵ective leptonic weak mixing angle

matches the tree-level expression to all orders in

perturbation theory applies, following the LEP

definition, to the ratio of the real part of the

vector and axial-vector form factors. Since the

Green’s functions associated to the Zff̄ vertex

satisfy the Ward identities [22] for an arbitrary

complex value of the weak mixing angle, then dif-

ferent prescriptions can be devised to assign the

imaginary part of the counterterm and, in turn,

of the weak mixing angle at q2 = M2
Z .

The Gµ scheme

The muon decay amplitude allows to establsh a rela-
tion between ↵, Gµ,MZ and sin2 ✓`eff which reads

sin2 ✓`eff cos ✓2effM
2
Z =

⇡↵
p
2Gµ

(1 +�r̃) . (12)

with the following expression for �r̃

�r̃ = �↵(s)��⇢+�r̃rem (13)

�r̃rem =
Re⌃AA(s)

s
�

✓
Re⌃ZZ

T (M2
Z)

M2
Z

�
⌃ZZ

T (0)

M2
Z

◆

�
sin2 ✓`eff � cos2 ✓`eff

cos2 ✓`eff

1

2

cW
sW

�ZAZ

We note the appearance of the combination �↵(s)��⇢,
which di↵ers from the corresponding one for �r in the

(↵,MWMZ) on-shell scheme �↵(s)� c2W
s2W

�⇢. The �r̃rem
correction does not contain any term enhanced by a
mt

2 factor, nor large logarithmically enhanced contribu-
tions. Using Eq. 12 to derive an e↵ective electromagnetic
coupling, it is possible to convert results computed in
the (↵,MZ , sin

2 ✓`eff ) scheme in the corresponding ones

in the (Gµ,MZ , sin
2 ✓`eff ) schemes. The �⇢(1) ⌘ �⇢

term present at O(↵) in this relation accounts for 1-
loop quantum corrections growing like mt

2; the latter
can be resummed to all orders, together with the ir-
reducible 2-loop contributions �⇢(2), computed in the
heavy top limit in Ref. [23]; the replacement Gµ !

Gµ/
�
1��⇢(1) ��⇢(2)

�
thus includes in the predictions

a class of universal higher-order corrections.

THE DRELL-YAN PROCESS

We study at NLO-EW the neutral current (NC)
DY process, in the setup described in [24], with the
POWHEG code [25], focusing on the invariant mass forward-
backward asymmetry AFB(M2

Z). Given the gauge in-
variant separation of photonic and weak corrections, we
focus on the latter to discuss the main features of the
(Gµ,MZ , sin

2 ✓`eff ) schemes, in view of a direct deter-

mination of sin2 ✓`eff . We first consider the impact of
the radiative corrections, for fixed values of all the input
parameters and then we evaluate the parametric uncer-
tainty due to a variation of the top mass mt. Both e↵ects
contribute to limit the precision of the predictions of the
DY distributions. We eventually consider the sensitiv-
ity of the latter to a variation of the sin2 ✓`eff value, for
a fixed choice of all the other inputs. We compare the
results of the (Gµ,MZ , sin

2 ✓`eff ) and of the traditional
(Gµ,MW ,MZ) schemes.
The absolute change �AFB of AFB(M2

Z) computed
with NLO weak virtual corrections with respect to the
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lation Eq. (1) holds to all orders. Considering the Zll̄
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once radiative corrections are accounted for. The e↵ec-
tive weak mixing angle has been defined at LEP/SLD by
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We replace all the bare couplings with the renormalized
ones and the associated counterterms, Eqs. (3-5):
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where �glL,R represent the e↵ect of radiative corrections,
expressed in terms of renormalized quantities and related
counterterms. We do not consider NLO QED corrections

We introduce the counterterms  and collect their effects together with the one of the diagrams in δgL,R
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sin2 ✓0 = sin2 ✓`eff + � sin2 ✓`eff (4)

e0 = e(1 + �Ze) (5)

where the bare parameters are denoted with subscript
0. The counterterms �M2

Z and �Ze are defined as in the
usual on-shell scheme. Complete expressions are given
in Eqs. (3.19) and (3.32) of Ref. [19]. The counterterm
� sin2 ✓`eff is defined by imposing that the tree-level re-

lation Eq. (1) holds to all orders. Considering the Zll̄
vertex, the couplings gfL,R, neglecting the masses of the

lepton l, are replaced by the form factors GL,R(q2) [9]
once radiative corrections are accounted for. The e↵ec-
tive weak mixing angle has been defined at LEP/SLD by
taking the form factors at q2 = M2

Z : QUESTION: in

the LEP definition the real parts were taken in

numerator and denominator separately (e.g. Eq.

12 of Bardin-Passarino-Gruenewald)

sin2 ✓`eff ⌘
I l3
Ql

Re

✓
�G

l
R(M

2
Z)

Gl
L(M

2
Z)� Gl

R(M
2
Z)

◆
. (6)

The form factors Gi can be computed in the SM in any
input scheme that does not contain sin2 ✓`eff as input
parameter, yielding in turn, via Eq.(6), a prediction for
sin2 ✓`eff , as discussed at length in Refs. [20, 21].
In this paper instead we consider the weak mixing an-

gle as an input parameter. In order to fix its renormal-
ization condition, we write the relation between the bare
coupling and its expression in terms of form factors at
a given perturbative order, with bare masses and cou-
plings.

sin2 ✓0 =
If3
Qf

Re

 
�G

f
R(M

2
Z)

G
f
L(M

2
Z)� G

f
R(M

2
Z)

!�����
0

. (7)

We replace all the bare couplings with the renormalized
ones and the associated counterterms, Eqs. (3-5):

sin2 ✓`eff +� sin2 ✓`eff =
I l3
Ql

Re

✓
�glR � �glR

glL � glR + �glL � �glR

◆
.

(8)
where �glL,R represent the e↵ect of radiative corrections,
expressed in terms of renormalized quantities and related
counterterms. We do not consider NLO QED corrections

The request that the tree-level relation holds to all orders fixes the counterterm for sin²θeff 

The renormalised angle is identified with the LEP leptonic effective weak mixing angle
The Z mass is defined in the complex mass scheme.

Δr is evaluated with sin²θeff as input and differs from the usual (α,MW,MZ) expression!23

M.Chiesa, F.Piccinini, AV, arXiv:1906.11569      
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AFB  mtop parametric uncertainties and perturbative convergence
M.Chiesa, F.Piccinini, AV, arXiv:1906.11569      

prediction for AFB at the LHC in the (Gmu, MZ, sin²θeff) input scheme (red), 
comparison with (Gmu,MW,MZ)   (blue)

    faster perturbative convergence                  →    good control over the systematic uncertainties
    very weak parametric mtop dependence                    of the templates used to fit the data



An electroweak scheme with (Gmu, MZ, sin²θeff) as inputs
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Pro’s
Every observable (e.g.  Z lineshape, A_FB)  expressed in terms of the quantity to be measured  →
      → templates are easily generated.
The determination of sin²θeff  can be discussed directly at the level of the complete observables,
      systematically including all the terms which potentially break the validity of the factorised Ansatz
      (e.g. QED IFI terms)

Theoretical systematic errors can be directly estimated within the same template fit approach

The choice of input parameters defined at the Z resonance minimises the size of additional radiative
       corrections, accelerating the perturbative convergence

See also  D.C.Kennedy, B.W.Lynn,Nucl.Phys.B322, 1; F.M.Renard, C.Verzegnassi, Phys.Rev.D52,1369; A.Ferroglia, G.Ossola, A.Sirlin,Phys.Lett.B507,147;

To be done
Higher-order (2-loop and higher) universal corrections have to be worked out again to achieve
a consistent formulation with competitive precision (in progress the 2-loop study)

Addendum
The definition of MZ in the complex mass scheme 
has to be systematically adopted in the simulation codes, 
to avoid biases in the very high precision mass determination



Template evaluation and 
estimate of the associated theoretical systematic error in the fit
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The theoretical systematic error depends on the perturbative and logarithmic accuracy of the templates 

in the pseudo observable approach

the main goal is the systematic removal (deconvolution) of QED and QCD effects from the data

in order to obtain new purely weak manipulated “data”, detector independent, ready for the fit

in the template fit case

the main goal is the systematic inclusion of QED (and QCD) higher corrections to all-orders

matched with the rest of the EW contributions

in order to stabilise the  template shapes

the issues with the precision of the QED formulation are the same in both cases
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QED factorisation in the radiative corrections to e+e- → f fbar

e+

e- f

fbar

ISR

IFI

FSR

The largest QED corrections are associated to soft and/or collinear emissions:

L=log(s/me²)~24,     l=(δE/E)

Factorisation properties of the soft and/or collinear amplitudes
  allow to separate the bulk of the QED corrections from the hard scattering process 

Different approaches to 
the evaluation to all orders of QED corrections and for the matching with fixed-order calculations:

   1)  flux functions (ZFITTER)

   2)  QED Parton Shower solution of DGLAP equations matched at NLO-EW (BabaYaga/HORACE)

   3)  CEEX 
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Matching schemes in the EW sector

ZFITTER flux functions, radiator functions

The complete scattering is described (LEP approach in ZFITTER) as 

   the convolution of a hard scattering cross section with flux functions

                                          

The flux functions encode the angular dependence of the final state recoiling against radiation.

                            have been computed at exact O(α) with soft photon exponentiation,  

                            for ISR/FSR/IFI, inclusive or with cuts 

The formulation naturally arises in the construction and dressing of a Born-improved approximation

→ Are the best available flux functions sufficiently precise and flexible?

σ(s) = ∫ ds′�
1
s

ρ(
s′�
s

) σ(s′�) ρ = ρISR + ρFSR + ρIFI
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Matching schemes in the EW sector

  Monte Carlo event generators for ffbar → f ’f ’bar production with EW corrections

          multiple photon radiation implemented via QED Parton Shower algorithm

          resummation to all orders of leading logarithms of collinear and soft origin

          matching with exact O(α) matrix elements;   

          matrix element corrections applied to all emitted photons (improvement towards O(α²) accuracy)

  →  is it possible to formulate a matching at NNLO level ?

FSV = 1 +
dσ

α,ex
SV − dσ

α,PS
SV

dσ0

FH,i = 1 +
dσ

α,ex
H,i − dσ

α,PS
H,i

dσ
α,PS
H,i

ΠS(Q2)FSV

∞
∑

n=0

dσ̂0

1

n!

n
∏

i=0

( α

2π
P (xi) I(ki) dxi d cos θi FH,i

)

dσ
∞

matched =

HORACE / BabaYaga matching scheme
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Matching schemes in the EW sector

       ·amplitude level exponentiation of the soft-photon emissions

        ·soft photon contributions exponentiated on top of any amplitude 

       ·collinear contributions and hard process dependent corrections are systematically included

              order by order in perturbation theory

        ·resummation of ISR mass logarithms not possible in this formalism

         KKMC   Monte Carlo code for the simulation of fermion-pair production in e+e- annihilation

                      it includes the full O(α) EW, from DIZET (2→2 process)

                      exact matrix elements for one- and two-photon emissions in QED,

                      properly matched with soft-photon exponentiation à la YFS

  ·Recent developments for the electron mass dependence of second order corrections arXiv:1910.05759

  ·Discussion about the matching in a full EW calculation (determination of   coefficients)̂β(r)
n

C.2 Higher-order radiative corrections, matrix elements, EWPOs

approaches in specific cases. One is the exact two-loop renormalization of small-angle QED Bhabha scattering
for small electron mass [145–147]. A systematic approach to the solution of the QED infrared problem in e

+
e
�

annihilation including resummation and proper treatment of the narrow neutral resonances, like the Z peak, was
deduced by the Kraków group [34, 148, 149], and is briefly introduced in the following subsection.

The understanding and safe numerical handling of the higher-order IR structure of cross-sections around
the Z peak is, of course, an old topic of research, see Refs. [34, 148–159]. The IR problem is certainly one of
the most demanding theoretical issues of future FCC-ee Tera-Z studies.

2.7 Electroweak and QED corrections in the CEEX scheme of KKMC
Let us explain briefly in the following short overview how the EW parts of the Standard Model corrections
to fermion pair production in electron–positron annihilation are actually embedded in the most sophisticated
scheme CEEX5 of the QED calculations with soft photon resummation of Refs. [148, 149], as implemented in
the KKMCMonte Carlo event generator [34]. We are going to follow the notation of Ref. [149], suppressing spin
or spinor indices for simplicity. It will also be shown that it is rather easy to modify the existing implementation
of the EW part in CEEX of KKMC, such that it precisely follows the S-matrix approach advocated in this section,
i.e., following in practice what is described around Eq. (C.116).

In the CEEX factorization scheme, the cross-section for the process

e
�
(pa) + e

+
(pb) ! f(pc) + f̄(pd) + �(k1), . . . , �(kn)

with complete perturbative corrections up to O(↵r
) and soft photon resummation reads as follows:

�(r)
=

1X

n=0

1

n!

Z
d⌧n(p1 + p2; p3, p4, k1, . . . , kn) e

2↵<B4(pa,...,pd)
1

4

X

spin

���M(r)
n (p, k1, k2, . . . kn)

���
2
, (C.120)

where the virtual form factor B4 is factorized (exponentiated) and real emission factors s are also factorized
out:6

M(r)
n (p, k1, k2, k3, . . . , kn) =

nY

s=1

s(ks)

8
<

:�̂(r)
0 (p) +

nX

j=1

�̂(r)
1 (p, kj)

s(kj)
+

X

j1<j2

�̂(r)
2 (p, kj1 , kj2)

s(kj1)s(kj2)
+ · · ·

9
=

; ,

(C.121)

such that the subtracted amplitudes �̂(r)
j

are IR-finite. Resummation, that is spin summing or averaging of the
squared amplitudes and the phase space integration

R
d⌧n, is performed numerically in a separate Monte Carlo

module of the KKMC, independent from the other part of the KKMC where spin amplitudes M(r)
n (p, k1, k2, k3,

. . . , kn) are constructed and evaluated. The S-matrix methodology of Eqs. (C.111)–(C.116) is relevant for the
2 ! 2 Born-like object �̂(r)

0 . In the O(↵2
) (r = 2) implementation of KKMC, this object reads:

�̂(2)
0 (p) = M(2)

0 (p) =
h
e
�↵B4(p)M(2)

0 (p)
i ���

O(↵2)
, (C.122)

where M(2)
0 (p) represents Born spin amplitudes corrected up to two loops, derived directly from Feynman

diagrams. In practice, the non-soft parts of the QED corrections are complete in �̂(2)
0 (p) up to two loops,

while the EW corrections are taken from DIZET 6.21 [32] (i.e., they are at 1+1/2 loops), exactly according
to the prescription shown in Eq. (C.124); see also Eqs. (21)–(24) in Ref. [34]. This implementation of the
EW corrections in KKMC can easily be modified to be compatible with the S-matrix approach, following the
prescription of Eqs. (C.125)–(C.129)).

5CEEX stands for coherent exclusive exponentiation.
6Momenta of all fermions pa, pb, pc, pd are denoted collectively as p.
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CEEX  (Coherent Exclusive EXponentiation)
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Higher-order corrections to e+e- → f fbar 
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Figure 1: Born diagrams for the qq̄ (a) and for the γγ (b,c) subprocesses.

l−(p3) l+(p4), which is depicted in figure 1 (a). This process is a neutral current pro-

cess and its amplitude, neglecting the Higgs-boson contribution, is mediated by s-channel

photon and Z-boson exchange. In the unitary gauge, the tree-level amplitude reads as

M0 = Mγ + MZ (2.1)
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where mZ is the Z-boson mass and ΓZ is the Z decay width, necessary to describe the Z

resonance region, s = (p1 + p2)2 is the squared partonic center-of-mass (c.m.) energy and

kµ = pµ
1 + pµ

2 , α = e2/(4π) is the fine structure constant, cθ ≡ mW /mZ is the cosine of

the weak mixing angle. The vector and axial-vector couplings of the Z-boson to fermions

are vf = Tf − 2Qfs2
θ and af = −Tf where Tf = ±1/2 is the third component of the weak

isospin and Qf is the electric charge of the fermion f .

The subprocess γ(p1) γ(p2) → l−(p3) l+(p4), which is depicted in figure 1 (b,c), is, at

lowest order, a pure QED reaction, whose differential cross section, in the partonic c.m.

frame and neglecting all fermion masses, reads as

dσ̂γγ

d cos θ
=

2πα2

s

(

1 + cos2 θ

sin2 θ

)

(2.2)

2.2 The O(α) calculation

The complete O(α) EW corrections to the neutral current Drell-Yan process have already

been computed in refs. [12, 13]. We have repeated independently the calculation and

included in addition the photon-induced processes. We summarize here the main features

of our approach.

The O(α) corrections include the contribution of real and virtual corrections. The

virtual corrections follow from the perturbative expansion of the 2 → 2 scattering amplitude
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basic building blocks

1-loop       full NLO-EW results (2→2 process), in analytic form, including lepton mass dependence

2-loop      exact expression for O(ααs) 2-loop self-energy corrections at arbitrary q² (massive quarks)
                     general massive case (arbitrary q²) in terms of elliptic functions or via numerical methods
                complete calculation of vertex corrections at q²= MZ² via numerical methods, 
                        general analytic q² dependence in progress
                box corrections with massless internal lines in analytic form; (see later for the massive cases)
                complete renormalisation program (ρ, Δr, Δκ, δe)

3-loop      results for self-energies from QCD studies (massless); numerical approaches (massive cases)

Analytical results allow a full explicit control over the expressions needed in the matching with QED

Alternative approaches, based on numerical techniques, for the fully massive (IR finite) integrals



Analytic progress: Master Integrals for DY processes at O(ααs) 
So this is what we computed Bonciani, Mastrolia, Schubert, DV 16

(a1) (a2)

(b1) (b2) (b3)

(c1) (c2)

S. Di Vita (DESY) 2L MIs for QCD⇥EW corrections to DY 12 / 25

R. Bonciani, S. Di Vita, P. Mastrolia, U. Schubert, arXiv:1604.08581

thin lines    massless
thick lines   massive
topologies b and c were not known

2 masses topologies evaluated with the same mass

SM results, where both W and Z appear,
 can be evaluated with an expansion in ΔM=MZ-MW

49 MI identified (8 massless, 24 1-mass, 17 2-masses)
solution of differential equations expressed in terms of
iterated integrals (mixed Chen-Goncharov representation)
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M.Heller, A.von Manteuffel, R.Schabinger arXiv:1907.00491

same class of diagrams expressed in terms of multiple polylogarithms

Alessandro Vicini - University of Milano                                                                                                                                                                 Beijing, November 20th 2019

The Master Integrals are solved with the Differential Equation technique
Main issues related to number of energy scales  (s, t, MW, MZ, Mmu)
             at mathematical level → appearance of elliptic kernels and  evaluation of boundary conditions

Recent important analytical developments for H+jet in full SM (massive quarks)
Important development in the fully numerical evaluations
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Open questions:   mass renormalisation scheme at 2-loop EW

resonances require the treatment of the particle decay-width

pole expansions (Laurent expansion of the amplitude) are valid only in the vicinity of the resonances

the complex-mass renormalisation scheme A. Denner, S.Dittmaier, arXiv:hep-ph/0605312      
provides a general, gauge invariant, definition of mass:
a complex quantity  identified as the pole of the propagator in the complex q² plane

              

              
    
it is formally proven in general (Ward identities satisfied by the Green’s functions)
    but it requires a careful handling 
    of all the imaginary parts of the amplitudes and of the renormalised parameters
    (e.g.  evaluation of the self-energies at complex q²
            avoid double counting of self-energy and vertex terms already present in the complex mass)

    not yet systematically explored beyond NLO-EW

    need to evaluate the remaining theoretical ambiguities in the mass definition

μ2
W = M2

W − iMWΓW μ2
Z = M2

Z − iMZΓZ

δμ2
V = ΣVV(μ2

V) δ𝒵V = − Σ′�VV(μ2
V)
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Open questions:  matching NNLO-EW with QED resummation

 in the CEEX matching approach, we need to
 identify the matching coefficients   between the full calculation and the soft-exponentiated xsec
 → identification of the relevant gauge invariant subsets of the amplitude

The coupling of photons and Ws must be handled with care 
     (respect gauge invariance and avoid double counting of imaginary parts 
       when the virtual corrections are included)
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MW determination from the WW threshold scan

Figure 16. W-pair production cross section as a function of the e+e� collision energy ECM. The
central curve corresponds to the predictions obtained with mW = 80.385 GeV and �W = 2.085 GeV.
Purple and green bands show the cross section curves obtained varying the W mass and width by
±1 GeV.

Taking data at a single energy point the statistical sensitivity to the W mass with a
simple event counting is given by

�mW(stat) =

✓
d�WW

dmW

◆�1 p�WW
p
L

1
p
✏p

(16.1)

where L is the data integrated luminosity, ✏ the event selection efficiency and p the
selection purity. The purity can be also expressed as

p =
✏�WW

✏�WW + �B

where �B is the total selected background cross section.
A systematic uncertainty on the background cross section will propagate to the W mass

uncertainty as

�mW(B) =

✓
d�WW

dmW

◆�1 ��B
✏

. (16.2)

Other systematic uncertainties as on the acceptance (�✏) and luminosity (�L) will
propagate as

�mW(A) =

✓
d�WW

dmW

◆�1✓�✏

✏
�

�L

L

◆
, (16.3)

while theoretical uncertainties on the cross section (�d�WW) propagate directly as

�mW(T) =

✓
d�WW

dmW

◆�1

��WW. (16.4)
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As the cross section at the WW production threshold is very sensitive to the MW value
it is natural to compute the theoretical cross sections in the (Gmu, MW, MZ) input scheme
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Figure 11.1: Born diagrams for e+e− → W+W−.

electrons whereas the s-channel diagrams containing the nonabelian gauge coupling con-
tribute also for right handed electrons. The analytical expressions read

M0(−, λ1, λ2, s, t) = M−
1

e2

2s2
W

1

t
+ 2(M−

3 −M−
2 )e2

[
1

s
−
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sW
g−

e

1

s − M2
Z

]

=
e2

2s2
W

[
1

t
M−

1 +
2

s − M2
Z

(M−
3 −M−

2 )
]

+e2
[
1

s
−

1

s − M2
Z

]
2(M−

3 −M−
2 ),

M0(+, λ1, λ2, s, t) = 2(M+
3 −M+

2 )e2
[
1

s
−

cW

sW
g+

e

1

s − M2
Z

]

= e2
[
1

s
−

1

s − M2
Z

]
2(M+

3 −M+
2 ),

(11.9)

where we have inserted the explicit form of the Z-boson fermion couplings g−
e , g+

e (A.14).
The corresponding cross section for arbitrary longitudinal polarizations of the leptons and
bosons is given by

(
dσ

dΩ

)

0

=
β

64π2s

∑

λ1,λ2

1

4
(1 − 2σP+)(1 + 2σP−) |M0(σ, λ1, λ2, s, t)|2 , (11.10)

and P± are the polarization degrees of the leptons (P− = ±1 corresponds to purely right-
and left-handed electrons, respectively).

The Born cross section determines the main features of W -pair production. We first
study the threshold behaviour [75, 76]. For small β the matrix elements behave as

Mσ
2 ,Mσ

3 ∝ β, Mσ
1 ∝ 1. (11.11)

Consequently the s-channel diagrams vanish at threshold and the t-channel graph domi-
nates in the threshold region. For β ≪ 1 the total cross section is given by

σ0(s) ≈
πα2

s

1

4s4
W

4β + O(β3). (11.12)

All terms ∝ β2 which are present in the differential cross section drop out in the total cross
section. s-channel diagrams yield contributions ∝ β3. In the SM the coefficient of the β3

78

At threshold in lowest order

As long as  , with low-precision requests,
MW can be determined in model independent way, based on kinematics alone

For a determination at the sub-MeV level, many details have to be considered, 
with the preparation of precise SM templates

β ≪ 1
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The MW determination from the WW threshold scan

With a single point measurement it possible to translate the precision on the xsec into a ΔMW value
                                      
An experimental precision at the  is foreseen

Theoretical goal:   precision of the theoretical prediction    

The current tools available for these analyses allow the simulation of     
       at full NLO-EW + higher order Coulomb effects computed in EFT
        yielding an uncertainty estimated to be    

A reduction of   by one order of magnitude will require
       the full NNLO-EW calculation  (2→4 process!) matched with 3-loop Coulomb enhanced terms
       computable in the EFT contribution

3-loop contributions without enhancement factors are estimated to be negligible

Full 2-loop QCD corrections to hadronic final states will be needed

The mass definition in the CMS and a gauge invariant handling of the imaginary parts at NNLO-EW
   will be theoretical / technical points to be discussed
Matching with soft QED exponentiation at NNLO level should also be discussed 

Δσ = 0.1 % ⟶ ΔMW = 1.5 MeV
Δσ = 0.02 %

Δσ = 0.01 %

e+e− → W+W− → 4f

ΔMW ∼ 3 MeV

Δσ

see arXiv:1903.09895, 1906.05379      
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Conclusions and outlook

the experimental precision available at future e+e- colliders poses
fascinating extreme challenges to theory for the correct interpretation of data
templates, the fitting tools, must not introduce systematic errors spoiling the exp precision 

basic QFT definitions, like e.g. the mass of unstable particles, 
need to be clarified and implemented in simulation code at NNLO-EW level

keeping sin²θeff among the input parameters offers a direct way to estimate this coupling
            (it would be great to reanalyse LEP data in this framework)
the same approach, formulated in the SMEFT, would offer a clean strategy to NP searches

The descriptions at NNLO-EW level of the Z lineshape and of the WW threshold
require the completion of Master Integrals calculations, with arbitrary kinematics,
at the frontier of our current ability

At the LHC   EW precision physics studies are currently ongoing 
       https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCEW
    big challenges (hadronic environment) → development of new tools and strategies

A collaboration and cross-talk of both hadron and e+e- collider communities, in both directions,
will be necessary to achieve these ambitious goals

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCEW

