





## ILC and CLIC

### A. Faus-Golfe

18-20 November 2019

CepC 2019

### Outline

> ILC

Technology update

CLIC Technology update



### Summary and perspectives EPPSU Granada 2019



18-20 November 2019

## ILC accelerator: Techology update



manufacture a margin and

http://www.linearcollider.org/

CepC 2019

and see all the set of the second second second

18-20 November 2019

# ILC parameters @ 250GeV and upgrades

The ILC A Global project, EPPSU December 2018

| Quantity                        | Symbol                           | Unit                              | Initial  | $\mathcal{L}$ Upgrade | $\mathrm{TDR}$ | $_{ m Upgr}$ | rades    |
|---------------------------------|----------------------------------|-----------------------------------|----------|-----------------------|----------------|--------------|----------|
| Centre of mass energy           | $\sqrt{s}$                       | ${ m GeV}$                        | 250      | 250                   | 250            | 500          | 1000     |
| Luminosity                      | $\mathcal{L} = 10^{34}$          | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | 1.35     | 2.7                   | 0.82           | 1.8/3.6      | 4.9      |
| Polarisation for $e^{-}(e^{+})$ | $P_{-}(P_{+})$                   |                                   | 80%(30%) | 80%(30%)              | 80%(30%)       | 80%(30%)     | 80%(20%) |
| Repetition frequency            | $f_{ m rep}$                     | Hz                                | 5        | 5                     | 5              | 5            | 4        |
| Bunches per pulse               | $n_{ m bunch}$                   | 1                                 | 1312     | 2625                  | 1312           | 1312/2625    | 2450     |
| Bunch population                | $N_{ m e}$                       | $10^{10}$                         | 2        | 2                     | 2              | 2            | 1.74     |
| Linac bunch interval            | $\Delta t_{ m b}$                | $\mathbf{ns}$                     | 554      | 366                   | 554            | 554/366      | 366      |
| Beam current in pulse           | $I_{ m pulse}$                   | $\mathbf{mA}$                     | 5.8      | 5.8                   | 8.8            | 5.8          | 7.6      |
| Beam pulse duration             | $t_{ m pulse}$                   | $\mu { m s}$                      | 727      | 961                   | 727            | 727/961      | 897      |
| Average beam power              | $P_{\mathrm{ave}}$               | MW                                | 5.3      | 10.5                  | 10.5           | 10.5/21      | 27.2     |
| Norm. hor. emitt. at IP         | $\gamma\epsilon_{\mathbf{x}}$    | $\mu{ m m}$                       | 5        | 5                     | 10             | 10           | 10       |
| Norm. vert. emitt. at IP        | $\gamma\epsilon_{ m y}$          | nm                                | 35       | 35                    | 35             | 35           | 30       |
| RMS hor. beam size at IP        | $\sigma^*_{ m x}$                | nm                                | 516      | 516                   | 729            | 474          | 335      |
| RMS vert. beam size at IP       | $\sigma^*_{ m y}$                | nm                                | 7.7      | 7.7                   | 7.7            | 5.9          | 2.7      |
| Luminosity in top $1\%$         | $\mathcal{L}_{0.01}/\mathcal{L}$ |                                   | 73%      | 73%                   | 87.1%          | 58.3%        | 44.5%    |
| Energy loss from beamstrahlung  | $\delta_{ m BS}$                 |                                   | 2.6%     | 2.6%                  | 0.97%          | 4.5%         | 10.5%    |
| Site AC power                   | $P_{\mathrm{site}}$              | MW                                | 129      |                       | 122            | 163          | 300      |
| Site length                     | $L_{ m site}$                    | $\mathrm{km}$                     | 20.5     | 20.5                  | 31             | 31           | 40       |

Luminosity upgrade to 10Hz also considered

### ILC accelerator progress: the Z pole @ 250GeV

A study about the Z-pole (ECM=91.2GeV) operation of ILC@250, assuming the undulator scheme for positron production has been made:

- ILC250 (shorter linac) is worse in total available power up to 3.7+3.7Hz operation, but better in beam dynamics (emittance growth at low gradient)
- The previous luminosity improvement for ILC250 by smaller horizontal emittance brings about significant effects for Z-pole operation
- Expected luminosity is now L ~ 2.1 x 10<sup>33</sup>/cm<sup>2</sup>/s
- No particular problem is expected in doubling the luminosity by doubling the number of bunches
- If you want even higher luminosity, the bottle neck is the momentum bandwidth of BDS under the large energy spread of the low energy beam

| Parameters of Operation               | at Z-             | pole             |         |       |
|---------------------------------------|-------------------|------------------|---------|-------|
| Center-of-Mass Energy                 | Ecm               | GeV              | 91.2    | 250   |
| Beam Energy                           | Ebeam             | GeV              | 45.6    | 125   |
| Bunch collision rate                  | fool              | Hz               | 3.7     | 5     |
| Electron linac rep.rate               |                   | Hz               | 3.7+3.7 | 5     |
| Pulse interval in electron main linac |                   | ms               | 135     | 200   |
| Electron energy for e+ prod.          | 12                | GeV              | 125     | 125   |
| Number of bunches                     | nb                | 0 - 2            | 1312    | 1312  |
| Bunch population                      | N                 | 10 <sup>10</sup> | 2       | 2     |
| Bunch separation                      | Δt <sub>b</sub>   | ns               | 554     | 554   |
| RMS bunch length                      | σz                | mm               | 0.41    | 0.30  |
| Electron RMS Beam energy spread at IP | σ <sub>p</sub> /p | %                | 0.30    | 0.188 |
| Positron RMS Beam energy spread at IP | σ <sub>o</sub> /p | %                | 0.30    | 0.150 |
| Emittance from DR (x)                 | YE DR             | μm               | 4       | 4     |
| Emittance from DR (y)                 | YE DR             | nm               | 20      | 20    |
| Emittance at linac exit               | YE ML             | μm               | 5       | 5     |
| Emittance at linac exit               | YEML              | nm               | 35      | 30    |
| Emittance at IP (x)                   | γε*,              | μm               | 6.2     | 5     |
| Emittance at IP (y)                   | YE .              | nm               | 48.5    | 35    |
| Electron polarization                 | P_                | 5                | 80      | 80    |
| Positron polarization                 | P.                | 5                | 30      | 30    |
| Beta x at IP                          | β*,               | mm               | 18      | 13    |
| Beta v at IP                          | β*,               | mm               | 0.39    | 0.41  |
| Beam size at IP (x)                   | σ.                | um               | 1.12    | 0.515 |
| Beam size at IP (v)                   | σ.                | nm               | 14.6    | 7.66  |
| Disruption Param (x)                  | Dx                |                  | 0.41    | 0.52  |
| Disruption Param (y)                  | Dy                |                  | 31.8    | 35.0  |
| Geometric luminosity                  | Lgeo              | 1033             | 0.95    | 5.29  |
| Luminosity                            | L                 | 1033             | 2.05    | 13.5  |
| Luminosity at top 1%                  |                   | %                | 99.0    | 74.0  |
| Luminosity emhancement factor         | HD                |                  | 2.2     | 2.55  |
| Number of beamstrahlung               | ny                |                  | 0.841   | 1.91  |

δ<sub>BS</sub>

Beamstrahlung energy loss

#### http://arxiv.org/abs/1908.08212

5

0.157

## **ILC accelerator configuration**



6



# **ILC beam accelerator sequence**



7

### **ILC accelerator Technology**



- Creating particles
   Sources
  - polarized elections/positrons
- High quality beams

- Damping ring
- Low emittance beams
  - Small beam size (small beam spread)
  - Parallel beam (small momentum spread)
- Beam transport

#### RTML (bunch compressor)

Acceleration

- Main linac
- superconducting radio frequency (SRF)
- Getting them collided Final focus
  - nano-meter beams
- Go to Beam dump



S. Michuzono, LCWS2019

# **Positron production**

Two concepts considered:

> SC helical undulators (baseline): rotating target, polarized, but e- at 125 GeV are complicated for commissioning/operation. Flux concentrator replaced by QWT (long pulse). No showstopper seen. **Detailed engineering** specifications for target wheel and experimental tests still to be done



SC undulator prototype developed at RAL

QWT (Quarter Wave Transformer)

Energy

photor

dump

### Electron driven source: dedicated 3 GeV NC S-band TW e<sup>-</sup> (pair production). High-energy e<sup>-</sup> are not necessary. e<sup>-</sup> independent commissioning is possible. However, polarization is not available.



Intensive design/simulation studies on-going at KEK

# **Positron production:** demonstrated parameters

| Parameter                                         | Requirement | Design | Achieved | Unit | Facility                                 |
|---------------------------------------------------|-------------|--------|----------|------|------------------------------------------|
| Bunch Charge                                      | 3.2         | 4.8    | 8.0      | nC   | SLAC SLC (E-Driven)                      |
| Undulator pitch                                   | 11.5        | 11.5   | 2.5      | mm   | SLAC E166                                |
| Positron Polarization (optional)                  | 30          | 30     | 80       | %    | SLAC E166                                |
| W-Re Target Heat Load (PEDD* for E-<br>Driven)    |             | 34     | 70       | J/g  | SLAC SLC (E-Driven)                      |
| Ti alloy Target Heat Load (PEDD for<br>Undulator) |             | 61     | 160      | J/g  | Estimated from<br>physics constant table |
| Flux Concentrator Peak field (E-Driven)           | 5.0         | 5.0    | 10       | т    | BINP                                     |
| QWT peak field (Undulator)                        | 1.0         | 1.0    | 2.3      | т    | KEK                                      |

PEDD: peak energy deposition density

S. Michuzono, LCWS2019

# **Damping Rings**



Worldwide light sources' emittance

### **·•• Damping Rings:** Fast extraction kicker



#### Bunch extraction test at ATF

CepC 2019

# **Damping Rings:** demonstrated parameters

| Parameter                                                              | Requirement   | Design        | Achieved      | Facility                          | Comment                                                      |  |
|------------------------------------------------------------------------|---------------|---------------|---------------|-----------------------------------|--------------------------------------------------------------|--|
| Horizontal Emittance( $\varepsilon_x$ )                                | 0.4nm         | 0.4nm         | 0.34nm        | MAX-IV                            | Pedro F. Tavares, 2017<br>Phangs Workshop                    |  |
| Vertical Emittance ( $\varepsilon_y$ )                                 | 2pm           | 2pm           | < 2pm         | SLS, Australian LS,<br>Diamond LS | TDR                                                          |  |
| Normalized Emittance ( $\gamma \varepsilon_x / \gamma \varepsilon_y$ ) | 4.0µm/20nm    | 4.0µm/20nm    | 4.0µm/15nm    | ATF                               | Y. Honda <i>et al.,</i> PRL 92<br>(2004) 054802.             |  |
| Fast Ion instability                                                   |               |               |               | SuperKEKB                         | On going                                                     |  |
| Electron Cloud Instability                                             |               |               |               | SuperKEKB/CesrTA                  | On going                                                     |  |
| Kicker Rise Time                                                       | < 6.15ns      | < 3.07ns      | 2.2ns         | ATF                               | T. Naito <i>et al.</i> , NIM A 571<br>(2007) 599.            |  |
| Kicker Voltage                                                         | <u>+</u> 10kV | <u>+</u> 10kV | <u>+</u> 10kV | ATF                               |                                                              |  |
| Kicker Voltage stability                                               | 0.07%         | 0.07%         | 0.035%        | ATF                               | T. Naito <i>et al.</i> , PR ST-AB <b>14</b><br>(2011) 051002 |  |
| Kicker Frequency                                                       | 1.8MHz        | 2.7MHz        | 3.25MHz       | ATF                               | (2011) 051002.                                               |  |
| Fast Kicker extraction test                                            |               |               |               | ATF                               |                                                              |  |

S. Michuzono, LCWS2019

# **RTML: bunch compressor**

S. Michuzono, LCWS2019



"Bunch compressor" compresses the bunch from 6 mm to 0.3 mm before entering the main linac (15GeV). This final bunch length is one or more orders of magnitude longer than FEL etc., so it is not difficult (eg SACLA; FWHM 3 "μm").

If the phase of the RF cavity is jittered, jitter occurs in the arrival time of the beam at the collision point. Therefore, the phase jitter of the RF cavity of the ILC bunch compressor must be kept within 0.24  $^{\circ}$  (0.15 mm). (but not difficult compared with the XFEL requirements of ~0.01  $^{\circ}$  )

| Parameter                                                 | Requirement | Design                                                            | Achieved | Facility      | Comment       |
|-----------------------------------------------------------|-------------|-------------------------------------------------------------------|----------|---------------|---------------|
| BC phase error                                            | 0.24°       |                                                                   | 0.042°   | KEK-STF       | M.Omet, Ph.D  |
| BC amplitude error                                        | 0.5%        |                                                                   | 0.041%   | KEK-STF       | thesis (2014) |
| Horizontal emittance increase ( $\gamma \varepsilon_x$ )  | 1µm         | RTML (0.47μm) ,<br>BC (0.43μm),<br>ML (0.00μm),<br>total (0.90μm) |          | In simulation | TDR           |
| Vertical emittance<br>increase ( $\gamma \varepsilon_y$ ) | 15 nm       | RTML (6.4nm) ,<br>ML (4.5nm),<br>total (10.9nm)                   |          | In simulation | TDR           |

S. Michuzono, LCWS2019







# Main linac





Innovative surface processing for high efficiency cavity by FNAL: decrease in number of cavities



19

## Main linac: ILC cost reduction R&D US-Japan cost reduction



CepC 2019

18-20 November 2019

### A. Yamamoto, Granada 2019 Main Linac: ILC cost reduction R&D US-Japan cost reduction

#### **Niobium material preparation:**

Large grain directly sliced from ingot (cost reduction), Nb thin-film coating on Cu based structure (HiPIMS), or Nb<sub>3</sub>Sn in Nb or Cu





Niobium ingot

High Power Impulse Magnetron Sputtering (HiPIMS)



 SRF cavity fabrication for high-gradient (N) doping well stablished) and high-Q (N infusion, low-T baking to be understood)



8 % %



75/120 N-Dope

> 1200 N-Infus BOOC HT

> > Baking 75/120C

21



18-20 November 2019

20

25 30 35

European XFEL:  $29 \pm 5.1$  MV/m

Eace (MV/m)

40 45

After Retreat As Received

Eusabl

LCLS-II: 18-21 MV/m O>2.7 10<sup>10</sup>

CepC 2019

# Main Linac: ILC cost reduction R&D US-Japan cost reduction

#### Fermilab and KEK has achieved ILC gradient goal > 31.5 MV/m with beam



A. Yamamoto, Granada 2019

Beam Dump

## Main linac: SRF mature technology



18-20 November 2019

### Main Linac: World wide Labs for RF systems



# Main linac: SRF Integrated global model



# Main linac: SRF demonstrated parameters

| Parameter                          | Requirement                    | Achieved                                                                                     | Comment                                                                                                               |
|------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Acc. Gradient in the<br>cryomodule | 31.5 MV/m                      | 32.5MV/m (PXFEL-1, DESY)<br>31.5MV/m(CM-2, ASTA)<br>32 MV/m(CM-1&2a,STF)                     | DESY-Proto-XFEL (ILC-TDR V3, Part-1,<br>p43)<br>FNAL-ASTA (E. Harms, AWLC14 May<br>2014)<br>STF(KEK news May 22,2019) |
| Average Q0 in cryomodule           | 10 <sup>10</sup>               | - (PXFEL-1, DESY)<br>0.9x10 <sup>10</sup> (CM-2, ASTA)<br>0.7x10 <sup>10</sup> (CM-1&2a,STF) | FNAL-ASTA (E. Harms, AWLC14 May<br>2014)<br>KEK-STF report (Y. Yamamoto, STF,2016)                                    |
| Acc. Gradient at vertical test     | ≧35(±20%)<br>MV/m<br>≧90%yield | <37 MV/m><br>~94%                                                                            | TDR vol-3 part I, Chapter 2.3                                                                                         |
| Beam current                       | 5.78mA                         | 6mA (800µs beam pulse length)                                                                |                                                                                                                       |
| Number of bunches                  | 1312                           | 2400 (800µs beam pulse length)                                                               |                                                                                                                       |
| Bunch charge                       | 3.2nC                          | 3nC (600µs beam pulse length)<br>2nC (800µs beam pulse length)                               | DESY-FLASH 9mA-study,<br>TDR vol-3 part I, p.80                                                                       |
| Bunch space                        | 554ns                          | 333ns                                                                                        |                                                                                                                       |
| Bunch length                       | 727µs                          | 800µs                                                                                        |                                                                                                                       |
| Rf pulse width                     | 1.65ms                         | >1.65ms                                                                                      |                                                                                                                       |
| RF pulse repetition                | 5Hz                            | 10Hz                                                                                         | DESY XFEL                                                                                                             |



### **Final Focus: Nanobeam Technology**

**ATF/ATF2: Accelerator Test Facility** 

Courtesy: N. Terunuma



CepC 2019



### Final Focus: beam size and stability

Goal 1: Establish the ILC final focus method with same optics and comparable beamline tolerances

- ATF2 Goal : 37 nm → ILC 7.7 nm (ILC250)
  - Achieved **41 nm** (2016)

Goal 2: Develop a few nm position stabilization for the ILC collision

- FB latency 133 nsec achieved (target: < 366 nsec)</li>
- positon jitter at IP: 106 → 41 nm (2018) (limited by the BPM resolution)



### **Final Focus: FONT IP feedback**





### **Final Focus: Demonstrated ILC parameters**

S. Michuzono, LCWS2019

| Parameter                       | Requirement               | Design              | Achieved                     | Facility | Comment                                                                   |
|---------------------------------|---------------------------|---------------------|------------------------------|----------|---------------------------------------------------------------------------|
| ATF2 beam size ( $\sigma_y^*$ ) | 37 nm (ATF2<br>design)    |                     | 41 nm                        | ATF2     | T.Okugi, LINAC2016                                                        |
| ILC beam size                   | 7.7 nm (ILC design)       |                     |                              | ATF2     |                                                                           |
| Feedback position<br>stability  | 12% of<br>beam size (1nm) | 10% of<br>beam size | 10% (FB OFF)<br>⇒ 4% (FB ON) | ATF2     | P. Burrows,<br>AWLC2018                                                   |
| Feedback latency                | < 554 ns                  | < 366 ns            | 133 ns                       | ATF2     | Physics Procedia 37<br>(2012) 2063.<br>Phys.Rev.Accel.Beams<br>.21.122802 |

- Same beam-based correction procedure used in ATF2 gives very good results in the ILC BDS
- Short-range wakefields on the IP beam size are negligible in the ILC BDS.
- Long-range wakefields due to resistive walls, in a perfect machine, showed that they induce a significant vertical offset at the IP and thus a luminosity degradation, could be compensated with appropriate IP intra-train feedback.



# Beam Dump system



| Water beam dump  | Req. | Des. | Achieved | unit | Comment                                                                                                                                   | S. Michuzono, LCWS2019 |
|------------------|------|------|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| ILC 250GeV       | 2.6  | 17   | -        | MW   | Designed for 500GeV beam                                                                                                                  |                        |
| SLAC 2mile LINAC | -    | 2.2  | 0.75     | MW   | ILC beam dump prototype                                                                                                                   |                        |
| CEBAF            | 0.9  | 1.0  | 0.73     | MW   | In operation at Jefferson Lab from the 90s to the present. 2 units (2 beam lines). Composite type with aluminum plates arranged in water. |                        |



# Acceleration preparation phase R&D

#### S. Michuzono, LCWS2019

|                                                       |                             | Pre-<br>prep.                                    | P1                                                                                                                                                                                                                                                   | P2             | P3             | P4          | 1            | 2              | 3              | 4             | 5            | 6           | 7     | 8      | 9    | 10   | Phys.<br>Exp. |        |               |
|-------------------------------------------------------|-----------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------------|--------------|----------------|----------------|---------------|--------------|-------------|-------|--------|------|------|---------------|--------|---------------|
|                                                       | Preparation.                |                                                  |                                                                                                                                                                                                                                                      |                |                |             |              |                |                |               |              |             |       |        |      |      |               |        |               |
|                                                       | Construction                |                                                  |                                                                                                                                                                                                                                                      |                |                |             |              |                |                |               |              |             |       |        |      |      |               |        |               |
|                                                       | Commissioning               |                                                  |                                                                                                                                                                                                                                                      |                |                |             |              |                |                |               |              |             |       |        |      |      |               |        |               |
|                                                       | Physics Exp.                |                                                  |                                                                                                                                                                                                                                                      |                |                |             |              |                |                |               |              |             |       |        |      |      |               |        |               |
| Main tasks to be done during 4-year preparation phase |                             |                                                  |                                                                                                                                                                                                                                                      |                |                |             |              |                |                |               |              |             |       |        |      |      |               |        |               |
| Area Tasks KEK UC action r                            |                             |                                                  |                                                                                                                                                                                                                                                      |                |                |             |              |                |                |               |              |             |       |        |      |      |               |        |               |
| Accelerate                                            | or Design                   | Desig                                            | gn p                                                                                                                                                                                                                                                 | aran           | neter          | r op        | timi         | zatio          | m              |               |              |             |       |        |      |      |               |        | on            |
| SCRF                                                  |                             | Supe<br>chara<br>Hub-<br>Syste<br>(Stab<br>trans | Superconducting material, cavity properties (electric field, resonar<br>characteristics)<br>Hub-lab functioning<br>System performance stabilization<br>(Stabilization of the performance and maintenance, including internation<br>transport of CM ) |                |                |             |              |                |                |               |              |             |       |        |      |      |               |        |               |
| Nanobeam                                              | L                           | Mini<br>Bear                                     | mizi<br>n ha                                                                                                                                                                                                                                         | ing t<br>andl  | he b<br>ing    | ean<br>(DI  | isiz<br>R, R | e an<br>TM     | d de<br>L, F   | mor<br>BDS    | stra<br>, BI | ting<br>D)* | stal  | bility | y    |      |               |        |               |
| Accelerator<br>- Positron so<br>- Beam dum            | elements<br>ource (e+)<br>p | e+: U<br>balar                                   | Jndu<br>ice o                                                                                                                                                                                                                                        | ulato<br>of th | or-dr<br>e du  | iven<br>mp, | (po<br>coc   | olari<br>oling | zatio<br>, saf | on) (<br>čety | or a         | n el        | ectr  | on-d   | rive | n sy | stem          | (backu | <b>p)</b> , 1 |
| CFS                                                   |                             | Basic                                            | e Pl<br>sme                                                                                                                                                                                                                                          | an l<br>nt     | oy a           | ssui        | nin          | ga             | moo            | lel s         | site,        | enş         | gine  | ering  | g de | sigr | ı, dra        | wings, | sur           |
| common<br>support                                     | technical                   | Safet<br>Com                                     | ty (r<br>mu                                                                                                                                                                                                                                          | adia<br>nica   | tion,<br>tion  | hig<br>an   | h-p<br>d no  | ressi<br>etwo  | nre g<br>ork   | gas, (        | etc.)        |             |       |        |      |      |               |        |               |
| Administra                                            | ation                       | Gene<br>Adm                                      | ral a<br>inis                                                                                                                                                                                                                                        | affai<br>trat  | rs, f<br>ive : | inaç<br>sup | e n<br>port  | int<br>for     | rel<br>IL(     | ntion<br>Cpr  | s, p<br>e-la | ubli<br>b   | c rel | latio  | ns   |      |               |        |               |

### **European ILC preparation plan**

| ltem/topic      | Brief description                                                                                                                                                          | CERN | France CEA | Germany DESY | Time line               |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|--------------|-------------------------|--|
|                 | Cavity fabrication including forming and EBW technology,                                                                                                                   | ×    |            |              | ZD17-18                 |  |
| SCRF            | Cavity surface process: High-Q <b>B</b> –G with N-infusion to be demonstrated with statics, using High-G cavities available ( $\# > 10$ ) and fundamental surface research |      | 2017-18    |              |                         |  |
|                 | Power input-coupler: plug compatible coupler with new ceramic window requiring no-coating                                                                                  | 1    | 2017-19    |              |                         |  |
|                 | Tuner: Cost-effective tuner w/lever-arm tuner design                                                                                                                       | 4    | 1          |              | 2017-19                 |  |
|                 | Cavity-string assembly: clean robotic-work for QA/QC.                                                                                                                      |      | 1          |              | 2017-19                 |  |
| Cryogenics      | Design study: optimum layout, emergen cy/failure mode analysis, He<br>inventory, and cryogenics safety management.                                                         | *    |            |              | ZD17-18                 |  |
| HLRF            | Klystron: high-efficiency in both RF power and solenoid using HTS                                                                                                          | 1    |            |              | 2017- (l <b>o</b> nger) |  |
| CP5             | Civil engineering and layout optimization, including Tunnel Optimization Tool<br>(TOT) development, and general safety management.                                         | *    |            |              | 2017-18                 |  |
| Beam dump       | 18 MW main beam dump: design study and R&D to seek for an optimum and reliable system including robotic work                                                               | ٠    |            |              | 2017- (longer)          |  |
| Positron source | Targetry simulation through undulator driven approach                                                                                                                      |      |            | *            | 2017-19                 |  |
| Rad. safety     | Radiation safety and control reflected to the tunnel/wall design                                                                                                           | 4    |            |              | 2017 – (longer)         |  |



## **CLIC** accelerator: status and rebaselining





http://clic-study.web.cern.ch/



CepC 2019

18-20 November 2019

### **CLIC Review**

CLIC Accelerator Study - Review of objectives for the MTP 2016-2019

March 1<sup>st</sup>, 2016

#### Report from the Review Panel

Members: O. Brüning; P. Collier, J.M. Jimenez, R. Losito; R. Saban, R. Schmidt; F. Sonnemann; M. Vretenar (Chair).

#### Introduction and general remarks

The Panel was very impressed by the enormous amount of work that was presented, by the enthusiasm of the CLIC team and by the wealth of knowledge accumulated by the CLIC study. The CLIC accelerator study has reached a high level of maturity and has been able to establish a large community consisting in about 50 collaborating laboratories and universities, working together on a number of technical challenges

After the publication of the Conceptual Design report in 2012, the CLIC Study is presently in the Development Phase, to prepare a more detailed design and an implementation plan for the next European Strategy Upgrade in 2018-19. This phase is expected to be followed by a Preparation Phase covering the period 2019-25; in case of a positive decision, a construction

## **Key recommendations**



- Optimized, staged design: 380 GeV (optimised for Higgs + top physics) → 1.5 TeV → 3 TeV
- Optimize cost and power consumption
- Support efforts to develop high-efficiency klystrons
- Develop 380 GeV klystron-only version as alternative to PETS
- Consolidate high-gradient structure test results
- Develop plans for 2020-25 ('preparation phase')
- Continue and enhance participation in KEK/ATF2 for ultra-low beam sizes

#### 2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

#### 2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

#### 2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

#### 2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

#### **2025 Construction Start**

Ready for construction; start of excavations

#### 2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion



### Legend CLIC at 380GeV and upgrades

CERN existing LHC

Potential underground siting :

| <br>CLIC 380 Gev |
|------------------|
| <br>CLIC 1.5 TeV |
| <br>CLIC 3 TeV   |

**Jura Mountains** 

œ

| Parameter                            | Symbol                        | Unit                                       | Stage 1 | Stage 2       | Stage     |
|--------------------------------------|-------------------------------|--------------------------------------------|---------|---------------|-----------|
| Centre-of-mass energy                | $\sqrt{s}$                    | GeV                                        | 380     | 1500          | 3000      |
| Repetition frequency                 | $f_{\rm rep}$                 | Hz                                         | 50      | 50            | 50        |
| Number of bunches per train          | $n_b$                         |                                            | 352     | 312           | 312       |
| Bunch separation                     | $\Delta t$                    | ns                                         | 0.5     | 0.5           | 0.5       |
| Pulse length                         | $	au_{ m RF}$                 | ns                                         | 244     | 244           | 244       |
| Accelerating gradient                | G                             | MV/m                                       | 72      | 72/100        | 72/10     |
| Total luminosity                     | L                             | $10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ | 1.5     | 3.7           | 5.9       |
| Luminosity above 99% of $\sqrt{s}$   | $\mathscr{L}_{0.01}$          | $10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ | 0.9     | 1.4           | 2         |
| Total integrated luminosity per year | $\mathscr{L}_{\mathrm{int}}$  | fb <sup>-1</sup>                           | 180     | 444           | 708       |
| Main linac tunnel length             |                               | km                                         | 11.4    | 29.0          | 50.1      |
| Number of particles per bunch        | Ν                             | 10 <sup>9</sup>                            | 5.2     | 3.7           | 3.7       |
| Bunch length                         | $\sigma_z$                    | μm                                         | 70      | 44            | 44        |
| IP beam size                         | $\sigma_x/\sigma_y$           | nm                                         | 149/2.9 | $\sim 60/1.5$ | $\sim 40$ |
| Normalised emittance (end of linac)  | $\varepsilon_x/\varepsilon_y$ | nm                                         | 900/20  | 660/20        | 660/2     |
| Final RMS energy spread              |                               | %                                          | 0.35    | 0.35          | 0.35      |
| Crossing angle (at IP)               |                               | mrad                                       | 16.5    | 20            | 20        |

Lake Gen

Luminosity increases could also be considered for 380 GeV with 100 Hz operation

### CLIC rebaseline: 380 GeV and power generation



### **CLIC: Klystron option**

#### R. Corsini LCWS2019





- Klystron-powered version studied and costed for 1st stage (380 GeV c.m.)
- Upgrade to 1 TeV and beyond based in any case on Two-beam scheme (klystron-based sectors re-usable with modifications)



### CLIC: 3 TeV and power generation





### **Technical developments**



#### S. Stapnes, CLIC 2019

| Modules (drive-beam,<br>klystron type) | Final modules, from revised designs to industrial modules                                                          |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Optimized structures                   | Use existing test-stands for<br>testing, increase<br>manufacturability, brazed,<br>halves, conditioning            |
| Klystrons and<br>Modulators            | Efficiency and costs,<br>significant gains possible for<br>efficiency, industrial cost-<br>models and optimisation |
| Magnets                                | Permanent magnets, industrial capabilities                                                                         |
| Civil engineering,<br>infrastructure   | Detailed site layout and CE/<br>infrastructure designs                                                             |

### **Technical developments:** Courtesy: W. Wuensch Normal Conducting Linac Technology Landscape



### **CLIC DR:** extremely low-emittances

----

11





Table 2.8: Design parameters for the improved design of the CLIC DRs, for the case of  $f_{RF} = 2$  GHs and  $N_0 = 5.7 \times 10^9$ . The magnetic field is varying slong the dipoles.

| Parameters, Symbol [Unit]                              | Variable dipole    |
|--------------------------------------------------------|--------------------|
| Energy, E [GeV]                                        | 2.86               |
| Bunch population, No 100                               | 5.7                |
| Circumference, C [m]                                   | 2020.4             |
| Number of are cells/wiggiers, Nd/Na                    | 90/40              |
| RF Voltage, Vgsr [MV]                                  | 6.50               |
| RF Stationary phase [9]                                | 63.0               |
| Harmonic number, 6                                     | 2926               |
| Momentum compaction, ap. [10 <sup>-10]</sup>           | 1.2                |
| Damping times, [r, r, r) [ms]                          | (1.15, 1.18, 0.60) |
| Energy loss/barn, U [MeV]                              | 5.8                |
| Horizontal and vertical tane, (Q., Q.)                 | (45.81, 13.55)     |
| Borizontal and vertical chromaticity, $(\xi_2, \xi_3)$ | (-109, -51)        |
| Wigder peak field, B <sub>w</sub> [T]                  | 3.5                |
| Wirgher length, La bui                                 | 2                  |
| Wiggler period, A., Jern]                              | -11                |
| Normalized horiz, emittance with IBS, ve., [am-rad]    | 635.9              |
| Normalized horiz, emittance with IBS, ye, Jun-rad-     | 6.5                |
| Longitudinal emittance with IBS, o [keVm]              | 4.8                |
| IBS factors har, /ser ./long.                          | 1.22/1.96/1.05     |

#### R. Corsini LCWS2019



### **CLIC ML:** emittance preservation

#### R. Corsini LCWS2019





#### Wake-field measurements in FACET

(a) Wakefield plots compared with numerical simulations.
(b) Spectrum of measured data versus numerical simulation.

#### Key challenges:

High-current drive beam, bunched at 12 GHz Power transfer & two-beam acceleration 100 MV/m accelerating gradient Low emittance generation, preservation, collision



#### The CLIC strategy:

- Align components (10 µm over 200 m)
- Control/damp vibrations (from ground to accelerator)
- Beam based measurements

   allow to steer beam and optimize positions
- Algorithms for measurements, beam and component optimization, feedbacks
- Experimental tests in existing accelerators of equipment and algorithms (FACET at Stanford, ATF2 at KEK, CTF3, Light-sources)



Figure 8.10: Phosphorous beam profile monitor measurements at the end of the FACET linar, before the dispersion correction, after one iteration step, and after three iteration steps. Iteration zero is before the correction.

### **CLIC:** next phase





| 2013 - 2019                                                                                                                                                                | 2020 - 2025                                                                                                                                                        | 2026 - 2034                                                                                                                   |                                                                                                     |                                                             |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|
| Development Phase<br>Development of a project plan for a                                                                                                                   | Propagation Place<br>Federation of Automatical                                                                                                                     | Construction Phase<br>Construction of the Inst Call                                                                           | Activities 2020-2025                                                                                | Purpose                                                     |  |  |
| integed CLC interfacementation in the<br>with URC interfact to chirolal<br>idevelopments with industry,<br>perface narrow of advertising<br>parts and systems, obtained ar | prevention, property of a series<br>industries uptowards studies,<br>and system uptowards studies,<br>additional proposal of the<br>argumment, step authentication | accelerate ways interpretation with<br>organization of bother stepses<br>operatorized the supervisory<br>flashese constanting | Design and parameters, final optimization and<br>system verifications                               | Luminosity performance, risk, cost power reduction          |  |  |
| inclusionly descentration                                                                                                                                                  | -                                                                                                                                                                  |                                                                                                                               | Construction of pre-series of modules                                                               | Final technical design and industrial capabilities          |  |  |
|                                                                                                                                                                            |                                                                                                                                                                    |                                                                                                                               | Accelerator structures optimization and<br>production of modules                                    | Final design, industrial capabilities, conditioning         |  |  |
| 2020<br>Update of the Earop                                                                                                                                                | 2026<br>Ready for construction                                                                                                                                     | 2035<br>First collisions                                                                                                      | X-band test facilities inside and outside CERN                                                      | Needed for construction, further cost/power reduction       |  |  |
| Strangy in Farlow P                                                                                                                                                        |                                                                                                                                                                    |                                                                                                                               | Final parameters and design of magnets,<br>instrumentation, alignment, stability, vacuum<br>systems | Luminosity performance, prepare for<br>construction tenders |  |  |
|                                                                                                                                                                            |                                                                                                                                                                    |                                                                                                                               | Drive beam front end optimization to ~20 MeV and system tests                                       | Drivebeam most critical parts, production preparation       |  |  |
| October 2019, Sendai                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                               | Detailed site design, impact studies, finalise infrastructure specifications                        | Final CE and infrastructure parameters, permits, tenders    |  |  |

### **In Summary**

- A e<sup>+</sup>e<sup>-</sup> LC is ready for start up ~2035: ILC hosted in Japan and CLIC at CERN, in both cases promoted and set up as international projects
- The main accelerator **technologies** have been **demonstrated** (CLIC need large scale production)
- The cost and implementation time are **similar** to **LHC** (~10B\$)
- The physics case is broad and profound, and being further developed
- The detector concept and detector technologies R&D are advanced

Implementing a LC now provides a very attractive, implementable way forward, with a good match between scientific progress and further technology development – not only for LC technologies ...

### Summary at a glance

| <b>Higgs Factories</b> | Readiness      | Power-Eff.            | Cost                        |
|------------------------|----------------|-----------------------|-----------------------------|
| ee Linear 250 GeV      |                |                       |                             |
| ee Rings 240GeV/tt     |                |                       |                             |
| μμ Collider 125 GeV    |                |                       | *                           |
| ALIC 125 GeV           |                | ?                     | ?                           |
|                        | F1 "Technology | F2 "Energy Efficiency | /" F3 "Cost" :              |
|                        | Green - TDR    | Green : 100-200 MW    | Green : <lhc< td=""></lhc<> |
|                        | Yellow - CDR   | Yellow : 200-400 MW   | Yellow : 1-2 x LHC          |
|                        | Red - R&D      | 160 · > 400 WW        | Red : > 2x LHC              |

.....But when theorists are more confused, it's the time for more, not less experiments.

(Nima Arkani-Hamed Cern Courier March 2019)





18-20 November 2019



### Thanks for your attention

CepC 2019

### Present and Future Large Accelerator projects In construction



#### **International Large Scale Projects**

An uncompleted view ...

In construction Under study



EPPSU FCC/CLIC, ILC ?

| 2018 2020  | 2022           | 2024                            | 2026                  | 2028 | 2030                    | 2032           | 2034                | 2036        | 2038         | 2040          | 2042                         | 2044                  | 2046                 | 2048                     | 2050               | 2052    | 2054            | 2056                        |    |
|------------|----------------|---------------------------------|-----------------------|------|-------------------------|----------------|---------------------|-------------|--------------|---------------|------------------------------|-----------------------|----------------------|--------------------------|--------------------|---------|-----------------|-----------------------------|----|
| LHC        | ESS<br>SC lina | <b>HL</b><br>ac 11 <sup>-</sup> | <b>-LHC</b><br>ΓNb₃Tn |      | <b>CepC.</b><br>High cu | l<br>urrent∶   | <b>LC</b><br>L.3GHz | SC          | FCCe<br>High | ee<br>current | <b>FC</b><br>16 <sup>-</sup> | <b>Chh</b><br>Γ Nb₃Tn | /NbTn                |                          |                    |         | FCChh<br>16T Nb | ( <b>FCCee)</b><br>₃Tn/NbTn | ,7 |
| Super KEKB |                | FAIF                            | 2                     |      | Z-pole                  | r<br>t<br>CeC  | nano-<br>peam/st    | tabilizatio | Z-pole       | 9             | FC<br>ER                     | Ceh                   | <b>HE-L</b><br>16T N | <b>HC (HL</b><br>b₃Tn/NI | <b>LHC)</b><br>bTn |         | μ+μ-            |                             |    |
|            |                |                                 | LBNF                  |      | ERL                     | <b>C</b><br>12 | LIC<br>2 GHz        |             |              |               |                              |                       | Spp                  | С                        |                    |         |                 |                             |    |
| CepC 2019  |                |                                 |                       |      | PLC                     | na<br>be       | ano-<br>eam/sta     | bilizatior  | ٦            |               |                              |                       |                      |                          |                    | 18-20 N | ovembe          | r 2019                      | 51 |

### **Schedule Implementation**



### Personal (A. Yamamoto) Technology View on Relative Timelines

| Timeline                     | ~ 5                  | ~                     | ~ 10 ~ 15       |               | ~ 25     | ~ 30        | ~ 35    |  |  |  |  |  |  |  |
|------------------------------|----------------------|-----------------------|-----------------|---------------|----------|-------------|---------|--|--|--|--|--|--|--|
| Lepton Collic                | ders                 |                       |                 |               |          |             |         |  |  |  |  |  |  |  |
| SRF-LC/CC                    | Proto/pre-<br>series | Const                 | ruction         | Oper          | ation    | Upgrade     |         |  |  |  |  |  |  |  |
| NRF-LC                       | Proto/pre-se         | eries <mark>Co</mark> | nstruction      | Oper          | ation    | Upgrade     |         |  |  |  |  |  |  |  |
| Hadron Colli                 | Hadron Collider (CC) |                       |                 |               |          |             |         |  |  |  |  |  |  |  |
| 8~(11)T<br>NbTi /(Nb3Sn)     | Proto/pre-<br>series | Const                 | ruction         |               | Operatio | on          | Upgrade |  |  |  |  |  |  |  |
| 12~14T<br><mark>Nb₃Sn</mark> | Short-mode           | el R&D                | Proto/Pre-serie | s Cons        | truction | Operation   |         |  |  |  |  |  |  |  |
| 14~16T<br>Nb <sub>3</sub> Sn | Short                | -model R&             |                 | Prototype/Pre | e-series | Constructio | on      |  |  |  |  |  |  |  |

Note: LHC experience: NbTi (10 T) R&D started in 1980's --> (8.3 T) Production started in late 1990's, in ~ 15 years

### **Future Projects Comparisons**

D. Schulte, Granada 2019

| Project | Туре | Energy [TeV]  | Int. Lumi. [a <sup>-1</sup> ] | Oper. Time [y] | Power [MW]          | Cost                    |
|---------|------|---------------|-------------------------------|----------------|---------------------|-------------------------|
| ILC     | ee   | 0.25          | 2                             | 11             | 129 (upgr. 150-200) | 4.8-5.3 GILCU + upgrade |
|         |      | 0.5           | 4                             | 10             | 163 (204)           | 7.98 GILCU              |
|         |      | 1.0           |                               |                | 300                 | ?                       |
| CLIC    | ee   | 0.38          | 1                             | 8              | 168                 | 5.9 GCHF                |
|         |      | 1.5           | 2.5                           | 7              | (370)               | +5.1 GCHF               |
|         |      | 3             | 5                             | 8              | (590)               | +7.3 GCHF               |
| CEPC    | ee   | 0.091+0.16    | 16+2.6                        |                | 149                 | 5 G\$                   |
|         |      | 0.24          | 5.6                           | 7              | 266                 |                         |
| FCC-ee  | ee   | 0.091+0.16    | 150+10                        | 4+1            | 259                 | 10.5 GCHF               |
|         |      | 0.24          | 5                             | 3              | 282                 |                         |
|         |      | 0.365 (+0.35) | 1.5 (+0.2)                    | 4 (+1)         | 340                 | +1.1 GCHF               |
| LHeC    | ер   | 60 / 7000     | 1                             | 12             | (+100)              | 1.75 GCHF               |
| FCC-hh  | рр   | 100           | 30                            | 25             | 580 (550)           | 17 GCHF (+7 GCHF)       |
| HE-LHC  | рр   | 27            | 20                            | 20             |                     | 7.2 GCHF                |

### **Advanced Linear Accelerators**

**ALEGRO** (Advanced LinEar collider study GROup, for a multi-TeV Advanced Linear Collider) Workshop (March 2018 in Oxford): http://www.physics.ox.ac.uk/confs/alegro2018/index



### **Technical Challenges in Energy-Frontier Colliders proposed**

|     |            | Ref.              | E<br>(CM)<br>[TeV]        | Lumino<br>sity<br>[1E34] | AC-<br>Power<br>[MW] | Cost-estimate<br>Value*<br>[Billion]  | В<br>[T]   | E:<br>[MV/m]<br>(GHz)  | Major Challenges in Technology                                                                                                        |
|-----|------------|-------------------|---------------------------|--------------------------|----------------------|---------------------------------------|------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| С   | FCC-<br>hh | CDR               | ~ 100                     | < 30                     | 580                  | 24 or<br>+17 (aft. ee)<br>[BCHF]      | ~ 16       |                        | High-field SC magnet (SCM)<br>- <u>Nb3Sn</u> : Jc and Mechanical stress<br>Energy management                                          |
| hh  | SPPC       | (to be<br>filled) | 75 –<br>120               | TBD                      | TBD                  | TBD                                   | 12 -<br>24 |                        | High-field SCM<br>- <u>IBS</u> : Jcc and mech. stress<br>Energy management                                                            |
| C   | FCC-<br>ee | CDR               | 0.18 -<br>0.37            | 460 –<br>31              | 260 –<br>350         | 10.5 +1.1<br>[BCHF]                   |            | 10 – 20<br>(0.4 - 0.8) | High-Q SRF cavity at < GHz, Nb Thin-film<br>Coating<br>Synchrotron Radiation constraint<br>Energy efficiency (RF efficiency)          |
| ee  | CEPC       | CDR               | 0.046 -<br>0.24<br>(0.37) | 32~<br>5                 | 150 –<br>270         | 5<br>[B\$]                            |            | 20 – (40)<br>(0.65)    | High-Q SRF cavity at < GHz, LG Nb-bulk/Thin-<br>film<br>Synchrotron Radiation constraint<br>High-precision Low-field magnet           |
| L   | ILC        | TDR<br>update     | 0.25<br>( -1)             | 1.35<br>(- 4.9)          | 129<br>(– 300)       | 4.8- 5.3<br>(for 0.25 TeV)<br>[BILCU] |            | 31.5 – (45)<br>(1.3)   | High-G and high-Q SRF cavity at GHz, Nb-bulk<br>Higher-G for future upgrade<br>Nano-beam stability, e+ source, beam dump              |
| ••• | CLIC       | CDR               | 0.38<br>(- 3)             | 1.5<br>(- 6)             | 160<br>(- 580)       | 5.9<br>(for 0.38 TeV)<br>[BCHF]       |            | 72 – 100<br>(12)       | Large-scale production of Acc. Structure<br>Two-beam acceleration in a prototype scale<br>Precise alignment and stabilization. timing |

18-20 November 2019

\*Cost estimates are commonly for "Value" (material) only.

### Large Accelerator Projects Key technologies:

| Components  |         | SCR                 | F  |    |      | NCRF | HLRF | SC Mag. |       | NC Mag. | Vac. | Optics | Others |         |
|-------------|---------|---------------------|----|----|------|------|------|---------|-------|---------|------|--------|--------|---------|
| Techniques  |         |                     | HG | HQ | CRYO | CRAB |      | HE-Klys | Nb₃Tn | CRYO    |      |        |        |         |
| P<br>R      | FC<br>C | FCC-hh              |    |    | X    | X    |      |         | X     | X       |      | X      |        |         |
| 0           |         | HE-LHC              |    |    | X    | X    |      |         | X     | X       |      |        | Coll   | Integr. |
| Б<br>Е<br>С |         | FCC-<br>eh/LHe<br>C |    |    | X    |      |      |         |       |         |      |        |        |         |
| I<br>S      |         | FCC-ee              | X  | X  | X    |      |      | X       |       |         | X    |        | IRs    | Integr. |
|             | LC      | ILC                 | X  | X  |      |      |      |         |       |         |      |        | IRs    | e+      |
|             |         | CLIC                |    |    |      |      | X    | X       |       |         | X    |        | IRs    |         |

### **ILC Summary**

- Most of the ILC accelerator parameters have been demonstrated at the various facilities.
- SRF Technology matured based on the success of European XFEL (10% scale of ILC Main linac).
- ILC preparation:
  - ILC cost reduction R&Ds are ongoing under US-Japan cooperation and ILC inprovement adopting these results are considered at US.
  - KEK issued ILC action plan.
  - European ILC preparation plan as "E-JADE" report was summarized.
- KEK published "Summary of Recommendations on ILC Project" based on the discussion at the international WG.
- The technical preparation plan in response to reports by ILC Advisory Panel organized by MEXT and the Science Council of Japan is presented.
- The plan identifies technical tasks to be carried out through international collaboration.

### **CLIC Summary**

- CLIC is now a mature project, ready to move towards the next phase
- There is an consistent way forward with an initial stage at 380 GeV, keeping the options open for future upgrades and/or other options
- The cost and implementation time for CLIC 380 are similar to LHC
- Key technical challenges have been solved, now further optimizing cost, power and performance



### Luminosity recipe: linear vs circular

$$\begin{split} L &= f_c \frac{N_{e^-} N_{e^+}}{4\pi \sqrt{\beta_x^* \varepsilon_x} \sqrt{\beta_y^* \varepsilon_y}} = \frac{I_{e^-} I_{e^+}}{4\pi \sqrt{\beta_x^* \varepsilon_x} \sqrt{\beta_y^* \varepsilon_y} \cdot f_c \cdot e^2} \\ P_{SR} &= V_{SRe^-} I_{e^-} + V_{SRe^+} I_{e^+} \end{split}$$

The way to reduce SR power is to reduce beam currents in both electron and positron beam. To keep luminosity high, one would need to reduce one, two or all in

$$\sqrt{\beta_x^* \beta_y^*} \cdot \sqrt{\varepsilon_x \varepsilon_y} \cdot f_c$$

CepC 2019

### Luminosity recipe: linear vs circular

- In storage rings additional limitations appear: beam-beam tune shift and IP chromaticity (small β<sub>y</sub>\*) which favors high beam currents, large emittance and high collision frequencies
- In linear the relevant number is the disruption parameter

CepC 2019

At high-energies the most dangerous effect is beamstrahlung: SR in strong EM field of opposing beam during collision. It can cause significant amount of energy loss, induce large energy spread and loss of the particles. Using very flat beams is the main way of mitigating this effect

$$\xi_{x,y} = \frac{N r_0 \beta_{x,y}^*}{2\pi \gamma \sigma_{x,y} (\sigma_x + \sigma_y)} < 0.1 - 0.5$$





### Luminosity recipe

Luminosity cannot be fully demonstrated before project implementation:

- Luminosity is a feature of the facility not the individual technologies
- Relying in experience, theory and simulations
- Foresee margins



### Luminosity recipe: the "dreamt" Luminosity

#### **Energy dependence:**

- At **low energies circular** colliders surpass
- Reduction at high energy due to SR
- At **high energies linea**r colliders excel
- Luminosity per beam power roughly constant



**Note: The typical higgs factory energies are close to the cross over in luminosity** Linear collider have polarised beams (80% e<sup>-</sup>, ILC also 30% e<sup>+</sup>) and beamstrahlung

## **Boosted Luminosity**

Benno List, Daniel Schulte, Dmitry Shatilov, Cheng Hui Yu, Vladimir Litvinenko, Thomas Roser



c.m. energy [GeV]