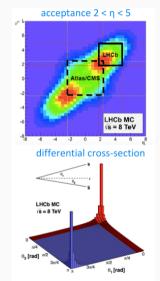

LHCb VELO Readout

Karol Hennessy on behalf of LHCb November 18, 2019

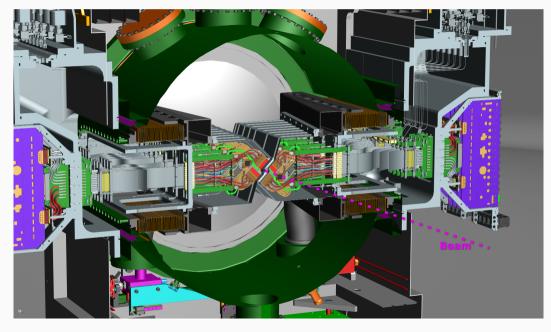
University of Liverpool

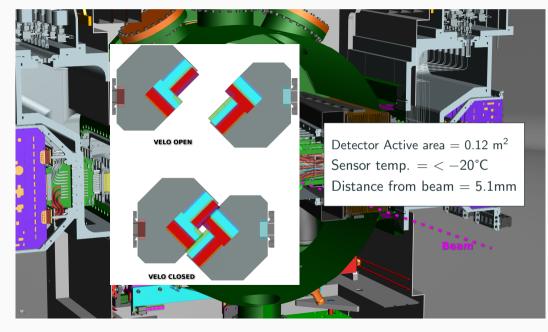

LHCb

Covering about 4% of the solid angle in the forward region, the detector captures 40% of the beauty cross-section

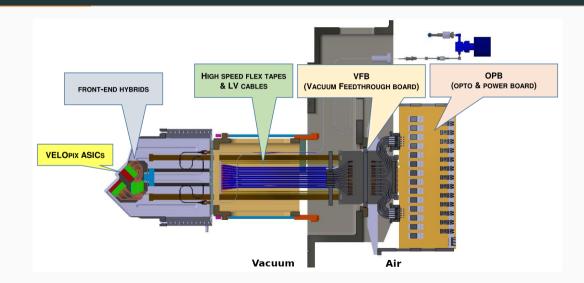
- Beam crossing rate 40 MHz
- 10^5 beauty pairs per second
- Selection of interesting events is mandatory

LHCb VELO Readout — November 18, 2019 — K. Hennessy

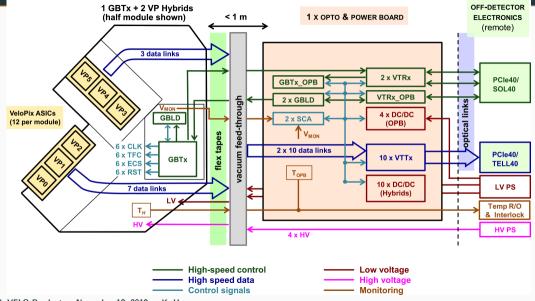



- Vertex Locator (VELO) for the upgraded LHCb detector
- Silicon pixel modules around the LHC beam interaction region
 - 50fb⁻¹ integrated luminosity for LHC Runs 3 & 4
 - Very high radiation environment
 - maximum fluence approx. $8{\times}10^{15}$ ${\rm MeV}\cdot n_{\rm eq}/{\rm cm}^2$
 - In vacuum and under active cooling

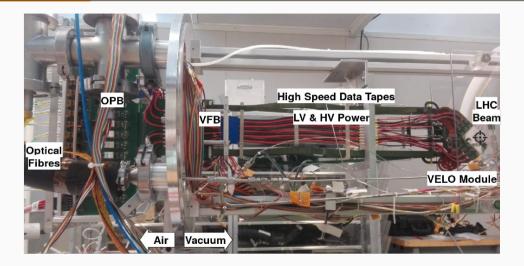
• LHCb has triggerless readout - full detector readout @ 40 MHz



LHCb Vertex Locator



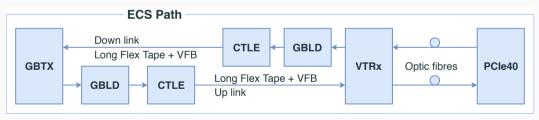
VELO CAD



VELO Electronics

LHCb VELO Readout — November 18, 2019 — K. Hennessy

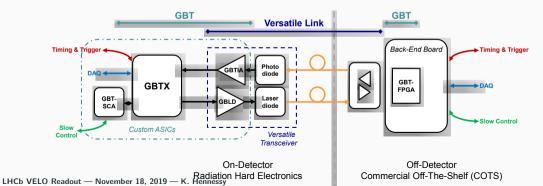
VELO Electronics Lab


VELO in Numbers

Feature	
Sensors	Pixels
# of modules	52
Detector Active area	$0.12 m^2$
	${\sim}41$ M pixels
Technology	electron collecting
	200 $ m \mu m$ thick
Max fluence	$8 imes 10^{15}~{ m MeVn_{eq}/cm^{-2}}$
HV tolerance	1000 V
ASIC Readout rate	40 MHz
Total data rate	2+ Tb/s
Total Power consumption	2.2-2.3 kW

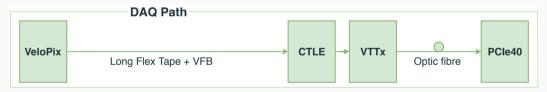
High Speed Pathways

ECS - Experiment Control System

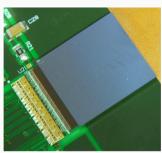

- Bi-directional with **GBTx** ASIC
- 4.8 Gb/s
- Use of GBLD as electrical line driver (emphasis and amplification functionality)

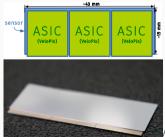
CTLE - Continuous Time Linear Equaliser

GBT - **ECS** interface


- The **GBTX** chip is a radiation tolerant chip for LHC experiments
- GBT Protocol can utilise three logical data paths
 - Trigger and Timing Control (TTC)
 - Slow Control (SC) via companion SCA chip
 - Data Acquisition (DAQ) (NOT used for VELO)
- All three logical paths can be encapsulated on a single physical interface

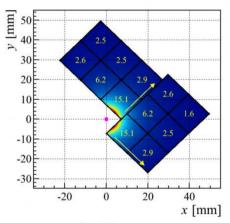
11/28

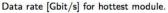

DAQ - Data Acquisition


- Uni-directional (from VeloPix to back-end)
- 5.12 Gb/s
- VeloPix has some internal emphasis

Similar electrical transmission lines for ECS and DAQ - expect similar performance.

- Front-end ASIC driving the design of the VELO data acquisition system
- Operates at LHC clock rate $\sim 40 \text{MHz}$
- Designed for high radiation tolerance and low power consumption
- Custom output serialiser Gigabit Wireline Transmitter (GWT)
- Slow control via SLVS protocol
- 12 VeloPix chips per module
- 20 readout links (more links for hotter chips)

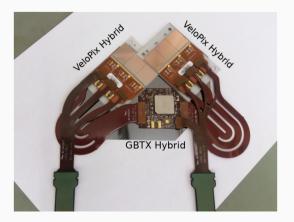

VeloPix ASIC


- Readout is data driven only read out when they have "hits above threshold" (a.k.a. zero-suppression)
- Binary readout @ 40 MHz
- VeloPix is optimised for high speed readout

Peak hit rate	900 Mhits/s/ASIC
Max data rate	19.2 Gb/s
Total VELO	2.85 Tb/s

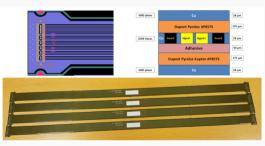
- Power consumption $< 1.5 \ {\rm W}{\cdot}{\it cm}^{-2}$
- Radiation hard 400 Mrad, and SEU tolerant
- Non-uniform radiation dose

LHCb VELO Readout — November 18, 2019 — K. Hennessy

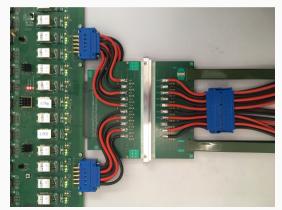


Average data rate

Hybrids

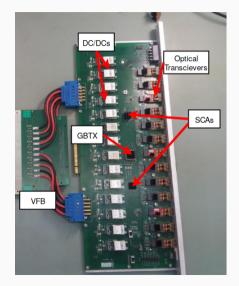

- VeloPix Hybrids
 - 20 high-speed data links @ 5 Gb/s
 - 4 hybrids per module (2 per side)
- GBTx Hybrid
 - Timing and control signals
 - GBLD as a line driver

GBT - http://cern.ch/go/6rsK



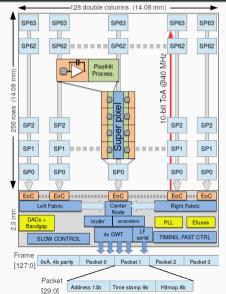
Hybrid, Cables, Feedthough

- High speed flex tapes
 - Stripline tech. 200 μmtrack & gap, 175 μmPyralux
 - length 550, 561, 575 mm


- Vacuum Feedthrough board
 - bringing all LV, HV, data, control signals to/from modules in vacuum

Opto-Power Board

- Situated on VELO tank exterior
 - Connects to Vacuum Feedthrough Board
 - Fibres to counting room at surface (\sim 300 m)
- Interface for data, control, monitoring signals and powering for VELO modules
 - FeastMP DC/DCs for power
 - Voltage monitoring
 - Optical transceivers (VTTx/VTRx) for driving to/from backend
- Control via GBTx and SCA


 $\mathsf{GBT}\text{-}\mathsf{SCA}\text{ - }\mathsf{http://cern.ch/go/Zcc9}$

VeloPix Data readout

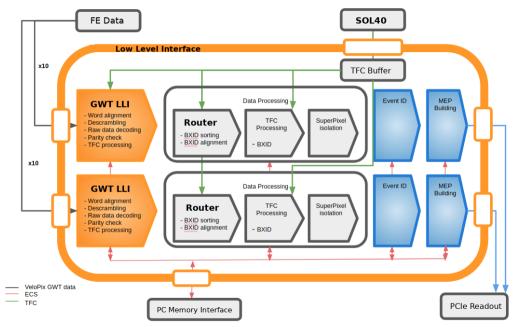
- Pixel data is aggregated into groups of 2×4 called **SuperPixels**
 - 30% reduction in data size
- Data is sent out-of-time ⇒ timestamp stored in SuperPixel data packet
- Custom serializer Gigabit Wireline Transmitter (GWT)
 - Low power 60 mW
 - 5.12 Gb/s line rate
- GWT protocol
 - scrambled data
 - parity check, no error recovery
 - $\bullet \ \Rightarrow \ \text{minimise bit error rate}$

LHCb VELO Readout — November 18, 2019 — K. Hennessy

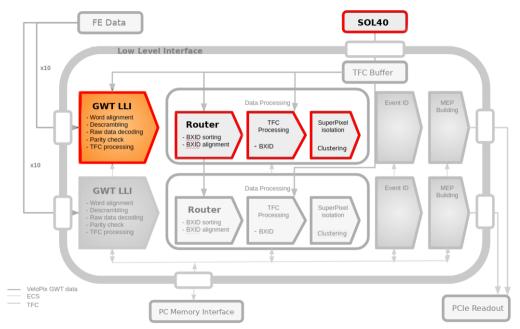
Backend DAQ and Slow Control - PCIe40

- Single control and readout board for the entire experiment
- Can be used for TFC, SC, or DAQ or all
- Common hardware, shared firmware components
- PCle Gen3 x16
- Intel Arria10 FPGA (10AX115S4F45E3SG)
 - High power consumption up to 80W FPGA, ~57W card
- up to 4 PCIe40 per chassis (ASUS ESC4000-G3, 2x Xeon 3 GHz, 8x 8 GB DDR4)

LHCb VELO Readout — November 18, 2019 — K. Hennessy

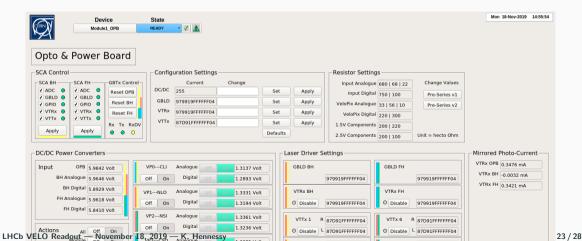


PCIe40 - http://cern.ch/go/HQ6P


- 48 bi-directional links (or 96 uni-directional) @ ~5 Gb/s
- Output bandwidth 100 Gb/s (measured).

LHCb/VELO Firmware

- Common PCIe hardware allows for software-like firmware design
 - Custom components in a global framework
- Common build and simulation environment
- Gitlab allows for continous integration/deployment
 - Automated Versioning and tracability
 - Automated testing
 - Issue tracking
 - User extensible
- Same hardware deployed to labs/institutes with timing, control and DAQ in one box


LHCb VELO Readout - November 18, 2019 - K. Hennessy

LHCb VELO Readout - November 18, 2019 - K. Hennessy

Control Software

- Software for configuring the electronics and readout
- Siemens WinCC-OA & Joint COntrols Project @ CERN (JCOP)

Quality Assurance

- IV curves, power consumption monitoring, voltage drops
- Band Gap Calibration best estimate of sensor temperature
- VeloPix equalisation and Noise scan
- Testpulse data taking over high speed links
- Bandwidth saturation tests of HS links
- All full module tests compared to individual component tests

Https://www.overleaf.com/8979545789zcsvndjkyyjd

1 Setup of Opto-& Power Board

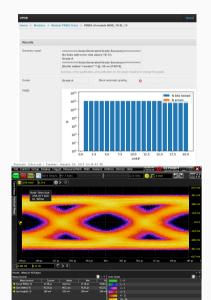
a: The latest stable firmware to use is lhcb_daq_firmware_v61_20190406_1_stp.working.sof and has 6 GBT and 20 GWT links. Connect the optical fibres to the VTTx sockets according to the following mapping: (see Fig. 1)

Velo Module: Electrical Testing Checklist

Kristof De Bruyn August 13, 2019

Link	0	1	2	3	4	5	6	7	8	9	10	11
MPO 0: Fibre ID Slot	6 OPB	$^2_{\rm BH}$	4 FH	8	10	12	11 1R	9 1L	7 2R	5 2L	3 3R	1 3L
MPO 2: Fibre ID Slot	2 4R	4 4L	$\frac{6}{5R}$	8 5L	10	12	11	7	9	5	3	1
MPO 3: Fibre ID Slot	2 6R	4 6L	6 7R	8 7L	10 8R	12 8L	11 9R	9 9L	7 10R	5 10L	3	1

- $\hfill\square$ b: Launch the MiniDAQ configuration panel using the alias wccmd or wccopb. (see Fig. 2)
- C: Make sure the (default) settings for the MiniPod and Subdetector Type match the fibre mapping: (see Fig. 2).


Link	0	1	2
MiniPod	Tx	Rx	Tx
Subdetector	OPB	Velo	Velo

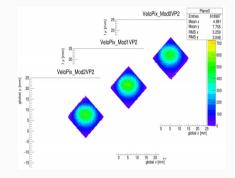
- □ d: Click the buttons Set Polarity and Set Detector. The yellow squares should turn green.
- $\hfill\square$ e: Launch the OPB configuration panel using the alias wccopb. (see Fig. 3)
- □ f: Step 1: Click the two activate buttons. All five boxes in the R column should get ticked and the three LEDs showing Tx & Rx Ready should become green.
- □ g: Step 2: Click the Power On button for GBTz/GBLD, Linkl, Link2 and the tiles you wish to power; or use the All On button. The LEDs should switch from red (off) to green (on) and the displayed voltages should be non-zero.
- I: Step 3: Click the All Config button. The LEDs should switch from yellow (Not Set) to green (OK).

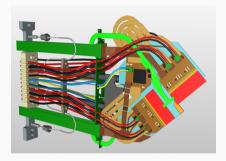
QA of High speed links

- PRBS test for high speed readout
- Slow control communication tests with OPB and VeloPix
- Timing and fast control checks

Vision_1	: VP_DEV/velo_\	/eloPix/Communicatio	n.pnl	_ 0 ×		
VeloPix	VeloPix Communication					
Front Hybrid GBTx	Clear Reset	Back Hybrid Gl	BTx	Clear Reset		
Front Hybrid		Back Hybrid				
VP0 - Asic 0 VP0 - Asic 1 VP0 - Asic 2 VP0 - Asic 2 VP0 - Asic 2 VP0 - Asic 2		VP2 - Asic 0 -	- VP2 - Asic 1	VP1 - Asic 2 - reard Vent reard Vent reard Vent vP1 - Asic 1 - - reard Vent reard Vent		
LHCb VELO Readout -	Novem	ber 18, 201	9 — K. I	lennessy		

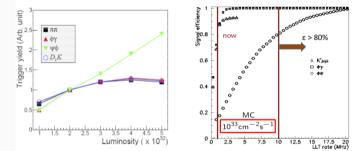
Testbeam Q4 2018


- Performed at CERN just prior to the Long Shutdown of SPS
- VeloPix and sensors had been tested in previous beam tests, but never with full high-speed readout, and complete LHCb slow control and DAQ chain
- Synchronised with Timepix 3 telescope. Allows to check time alignment < 1 ns


Testbeam Q4 2018

- Successfully took high-speed data from VeloPix synchronised between 3 module planes
- HV scans, Time-over-Threshold scans, Ikrum (Krummenacher current) scans
- Synchronisation tests
- Integrated with LHCb PCle40 firmware and software
- Several other testbeam and irradiation campaigns to qualify VELO sensors

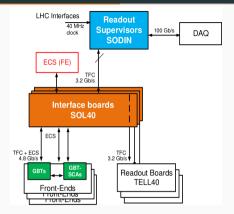
Conclusion


- Vertex Locator with high-speed readout in vacuum
- Leveraging many rad-hard components developed at CERN and within the collaboration
- VeloPix culmination of many years of rad-hard ASIC development for tracking
- Common readout platform for LHCb with VELO customisations
- Good performance of high speed links with full module control and readout chain

Thank You

Backup

The need for an upgrade

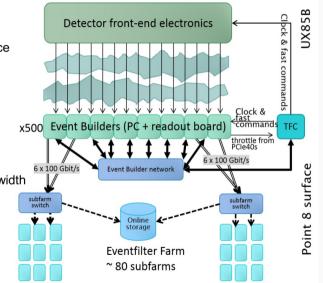

Due to the available bandwidth and the limited discrimination power of the L0 trigger, LHCb experiences the **saturation of the trigger yield** on hadronic channels at around $4. \times 10^{32}$ cm⁻²s⁻¹.

With the **upgraded detector it** will be possible to increase the physics yields by a factor 10 in the decays with muons, a factor 20 for hadronics channels, collecting ~ $50 fb^{-1}$ running at $1-2 \times 10^{32}$ cm⁻²s⁻¹ 10 times the current design luminosity but with increased complexity

(pileup greater a factor 5).

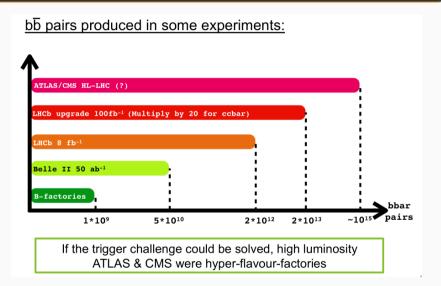
Timing and Fast Control (TFC)

- Single Readout Supervisor provides a clock and timing commands to front-end and back-end electronics
 - BXID Reset, FE Reset, BE Reset, Sync, ...
- Interfaces with LHC
- TFC commands are fixed latency
- Data are *NOT* fixed latency
- For VELO, TFC synchronisation commands form "special" GWT packets and sent immediately from front-end
 - (standard data packets are sent out-of-time)
- 10G PON network with optional feedback



Architecture

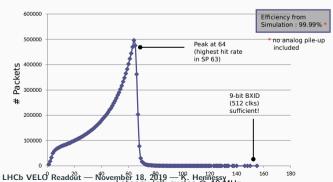
 Distance between FE and RO : ~350m

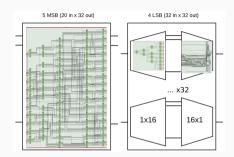

- ~15000 optical links
- ~ ~ 500 readout boards
- ~24 links in average on each board
- ~100 kbytes per event
- ~32 Tb/s aggregate bandwidth

MiniDAQ - All in one solution

- MiniDAQ = PCIe40 + server
- The MiniDAQ platform allows for controls, DAQ, and software all to run in a **standalone system**
- The server is provided with the PCle40 installed, necessary programming cables and OM3 fibres
- WinCC JCOP software comes pre-installed (a licence is needed)
- All necessary drivers and support software is installed
- With one server, one can control the front-end hardware and at the same time read out its data.

b-b pairs produced

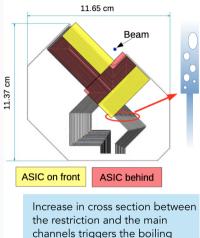



LHCb facts

- New data centre being constructed (2 MW)
- 4000 U in 6 container modules
- 400+ Gb/s to CERN IT
- Studying HPC FPGA, GPU, ML...
- Biggest/fastest readout system to date

BXID Router

- Time-ordering SuperPixel data
 - 9-bit router sorts data 1 bit at a time
 - Extensive simulation required both to maximise speed (¿160 MHz) and minimise FPGA resource usage
 - Latency limit ; 512 clock cycles



ECS Software

- Control system modelled with finite state machine tree
 - commands propagate down; status propagates up
- Integrates with SOL40, TELL40, SODIN
- Can integrate with COTS hardware (CAEN, ISEG, Wiener...)
- Rapid development
- Oracle database backed
- Archiving, trending, alarm functionality...

Device M	lanager 🤣
	💿 Operation 🛛 🔵 Configuration
Running on:	System1
Hardware	Logical FSM
- (- (stem1: MiniDAQ

Micro-channel cooling

C. Bertella

17-October-2019

500 µm thick silicon substrate

Input restrictions:

- 60 x 60 μm , 40 mm long
- Dominant pressure drop
- Flow Prevent instabilities among the channels

Main channels

- 120 x 200 μm
- [230, 290]mm long
- Heat is absorbed by the CO₂: change in gas/liquid ratio

Refs

- GBT
- GBT-SCA
- PCle40