CEPC Workshop 06/11/2019

1

IDEA's Muon detector optimisation ideas

Paolo Giacomelli INFN Bologna

Beam pipe: R~1.5 cm

Vertex:

5 MAPS layers

R = 1.7-34 cm

Drift Chamber:

4 m long, R = 35-200 cm

Outer Silicon wrapper: Si strips

Superconducting solenoid coil: 2 T, R ~ 2.1-2.4 m 0.74 X₀, 0.16 λ @ 90°

 $\label{eq:preshower: ~1 X_0} \textbf{Preshower: ~1 X_0}$

Dual-Readout Calorimeter:

2m / 7 λ_{int}

Yoke + Muon chamber

Beam pipe: R~1.5 cm

Vertex:

5 MAPS layers

R = 1.7-34 cm

Drift Chamber:

- 4 m long, R = 35-200 cm
- Outer Silicon wrapper: Si strips

Superconducting solenoid coil: 2 T, R \sim 2.1-2.4 m 0.74 X₀, 0.16 λ @ 90°

 $\label{eq:preshower: $$~1 X_0}$

Dual-Readout Calorimeter: 2m / 7 λ_{int}

Yoke + Muon chamber

Detector technology: **µ-RWELL**

The μ -RWELL is composed of only two elements:

- μ-RWELL_PCB
- drift/cathode PCB defining the gas gap

 $\mu\text{-RWELL_PCB}$ = amplification-stage \oplus resistive stage \oplus readout PCB

- The "WELL" acts as a multiplication channel for the ionization produced in the gas of the drift gap
- The charge induced on the resistive layer is spread with a time constant, τ ~ ρ×C

$$C = \varepsilon_0 \times \varepsilon_r \times \frac{S}{t} \cong 50 \ pF/m \text{ (pitch-width 0,4 mm)}$$

Single resistive layer with dense grid grounding – SIMPLIFIED HIGH RATE

IDEA Muon detector - Paolo Giacomelli

2

Barrel

Layer	R [mm]	Length [mm]	Thickness [mm]	int. Iength	pixel size [mm]	area [cm ²]	# of channels
µRwell	4520	±4500	20		1.5×500	2.6M	341K
iron	4560	±4500	300	1.5			
µRwell	4880	±4500	20		1.5×500	2.8M	368K
iron	4920	±4500	300	1.5			
µRwell	5240	±5260	20		1.5×500	3.5M	462K

	Disk	R _{in} [mm]	R _{out} [mm]	z [mm]	Thickness [mm]	int. Iength	pixel size [mm]	area [cm ²]	# of channels
	µRwell	454	5220	±4520	20		1.5×500	1.7M	227K
)	iron	454	5220	±4560	300	1.5			
	µRwell	454	5220	±4880	20		1.5×500	1.7M	227K
	iron	454	5220	±4920	300	1.5			
	µRwell	454	5220	±5240	20		1.5×500	1.7M	227K

IDEA's Muon detector would have in total: Barrel 900x2 m² Barrel 120000x2 channels Endcaps 1000x2 m² Endcaps 135000x2 channels

Endcap

Muon detector cost

	Cost [Meuro]	Engineers [years]	Technicians [years]	Operators [years]	
Detectors	4,9	0,4	1,0	0,0	
Installation	0,7	0,6	2,8	2,9	
Electronics	15,4	0,3	1,5	0,0	As
HV/LV Systems	0,7	0,2	1,4	0,0	
Gas System	0,3	0,2	1,3	0,0	
TOTAL	22,0	1,7	7,9	2,9	

Assumed 3 euro/channel

Assuming the following manpower costs:

Engineer	80 euro/hour
Technician	40 euro/hour
Operator	30 euro/hour

36 hours/week * 48 week/year = 1728 hours/year

	Cost [Meuro]
Detectors	4,9
Installation	0,7
Electronics	15,4
HV/LV Systems	0,7
Gas System	0,3
TOTAL	22,0

Assuming 300 MEuro as the cost of a CEPC detector, the Muon detector would be ~7.3% of the total

Muon detector cost

Some considerations

- Difficult to increase the strip pitch
- Could reduce the number of electronics channels by grouping strips two by two
 - Half the number of channels

	Cost [Meuro]
Detectors	4,9
Installation	0,7
Electronics	7,8
HV/LV Systems	0,7
Gas System	0,3
TOTAL	14,4

Assuming 300 MEuro as the cost of a CEPC detector, the Muon detector would be ~4.8% of the total

- \odot Space resolution would still be ~ 600 $\mu {\rm m}$
- Muon detector would measure 3 space (x,y,z) points with high precision
- An efficient muon trigger could be formed

Muon detector cost

More considerations

- Another possibility would be to descope the detector
 - This should be driven by the CEPC detector requirements
 - Could then become a simple Muon tagger, without the capability of doing standalone track reconstruction
- Move towards a RPC-based muon detector?
 - Would need to investigate the net cost savings
 - We are moving a centimetric space resolution instead of a sub-mm resolution

Backup