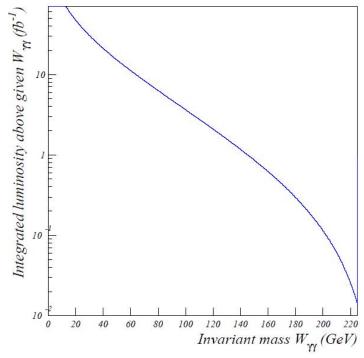
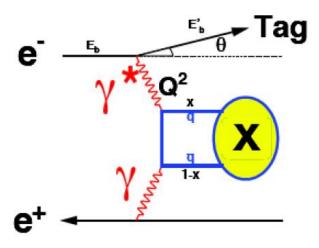

Two photon physics at CEPC


Igor Boyko, Vladimir Bytiev, Alexey Zhemchugov

JINR (Dubna)

Every ee collider is at the same time a gamma-gamma collider!



 $\sigma(e^+e^- \rightarrow e^+e^-X) \sim \alpha^4 \log^2(E)/m_e$ to be compared with annihilation: $\sigma(e^+e^- \rightarrow X) \sim \alpha^2/E^2$

- CEPC will provide several fb⁻¹ at γγ collision energy >100GeV
- It is our duty to produce good physics from this "free" statistics

Kinematics

Photon virtuality:

$$Q^2 = 4E_BE'_B\sin^2(\theta/2)$$

Gamma-gamma mass:

$$W = M(\gamma \gamma)$$

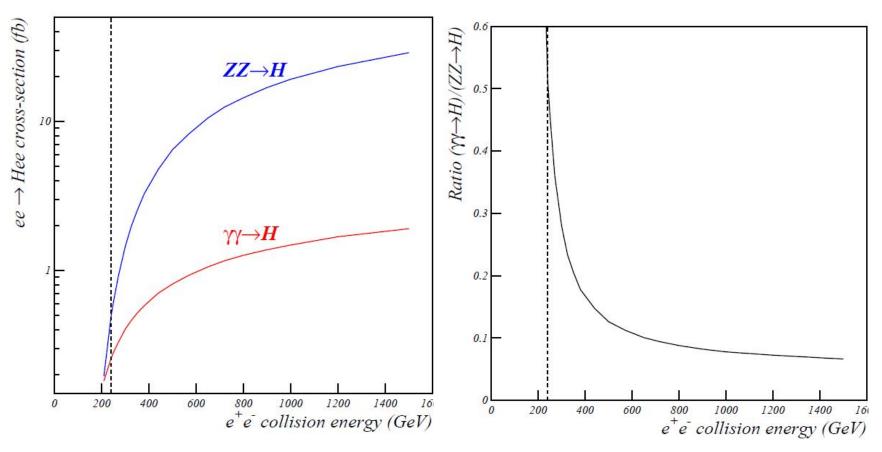
Bjorken x:

$$x = Q^2/(Q^2+W^2)$$

- Untagged events: collisions of quasi-real photons (low Q²)
- Single-tag events: collision of a quasi-real photon with a highly virtual one. One beam particle detected in the calorimeter
- Double-tag: 2 high-virtuality photons, both beam particles detected, event kinematics fully reconstructed
- Tagging at CEPC environment:
 - In Lumi calorimeter: 30mrad-6°
 - In ECAL (no tracking): 6-10°
 - ECAL+tracking: >10°

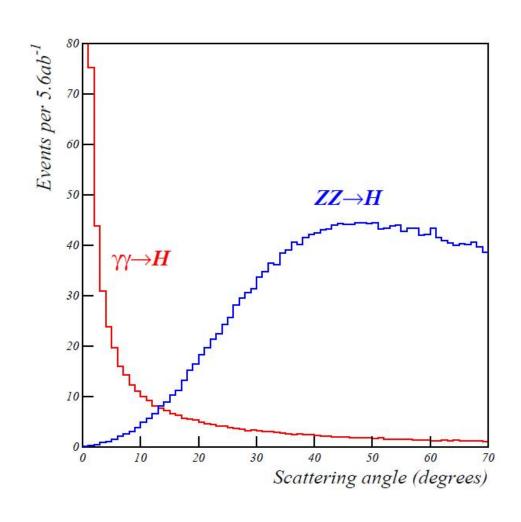
How to select $\gamma\gamma$ events

- Good P_⊤ balance
- Quite strong imbalance in P_Z
 - Tracks tend to be in the forward region
- Small visible invariant mass
 - Well separated from the radiative return to Z
- Single-tag (and especially double-tag) simplify selection a lot

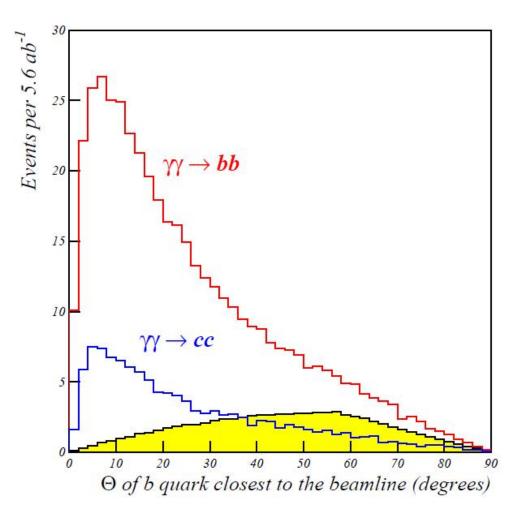

What can we study at CEPC?

- Higgs production!
- QED test: anomalous magnetic moment from γγ→ττ
- Spectroscopy of heavy quarkonia
- Photon structure function

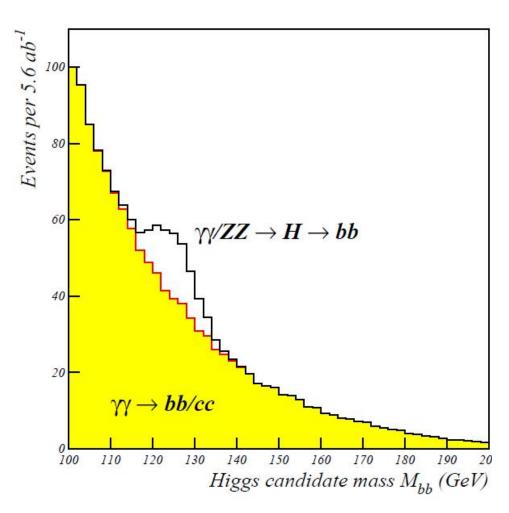
Higgs photoproduction


- Never has been observed
- Hyy vertex forbidden in SM at tree level
- We know for sure that $\gamma\gamma \rightarrow H$ does occur, because $H \rightarrow \gamma\gamma$ decay was observed
- Predicted cross-section 0.26fb @240 GeV
 - O(1000) events expected at CEPC
- Background:
 - ZZ→H: 0.50fb
 - $-\gamma\gamma\rightarrow$ bb: 1000 fb (background for channel H \rightarrow bb)
 - $-\gamma\gamma\rightarrow$ cc: 240000 fb (wrong tagging c as b)

ZZ fusion background


CEPC is the ideal place to study $\gamma\gamma \rightarrow H !!$

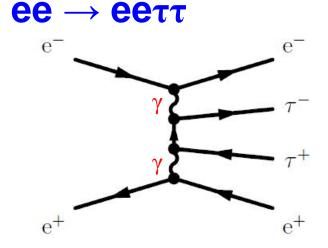
Electron scattering angle


- Single tag (Θ>30mrad) reduces signal by ~5 and γγ→ bb by ~15
- For ZZ→H electrons are scattered at a very large angle in nearly all events
- We cut 30mrad<⊕<24°
- The lower cut is dictated by the lumical acceptance; upper is from S/√B optimization

Detector acceptance

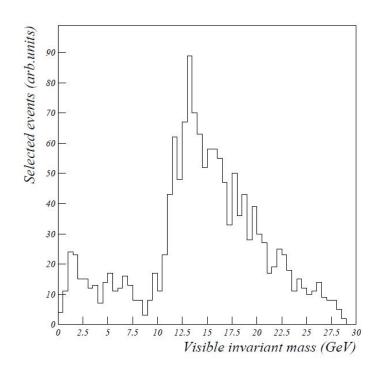
- Cut on jet angle ⊕>20°
 reduces qq background
 by factor of 2, almost
 "for free", since efficiency
 in Very Forward will be
 low anyway
- We assume that cc background is reduced by factor of 100 with 64% signal efficiency (CDR numbers)
- Within the acceptance (Θ_{jet}>20°) we assume 75% efficiency to reconstruct both jets

The Higgs signal



- Assuming 5 GeV mass resolution (CDR), we expect for 118<Mbb<132:
 - Signal: 57 events
 - ZZ→H: 33 events
 - γγ→ bb : 223 events
 - $-\gamma\gamma$ → cc: 55 events
- Signal significance: 4.1σ from H→bb alone
- Including other Higgs decay channels, the signal will be reliably observed (even 5σ discovery possible)

Anomalous magnetic moment of the tau lepton


- Anomalous magnetic moments of electron and muon (a_e and a_μ) are known with astonishing precision of 10^{-12} and 10^{-9}
- a_τ is known only at 10⁻² level (LEP2)
- Sensitivity to the new physics growth typically as M²

 At LEP the magnetic moment of tau lepton has been measured via the cross-section of untagged events

Estimation of sensitivity

- Selection efficiency: very conservative 0.42% (at LEP: 15-20%).
- Number of events at CEPC: 700K
- Statistical error at permille level. Measurement systematically dominated
- Systematics:
 - tracking 0.15% per track;
 - PID 0.15% per track;
 - luminosity: 0.1%;
 - trigger efficiency: 0.1%
- Total systematics: 0.5%

DELPHI measurement: ± 4%
CEPC will improve tau magnetic
moment by order of magnitude
Systematics-dominated after just
1/10 of the total luminosity

Quarkonium production

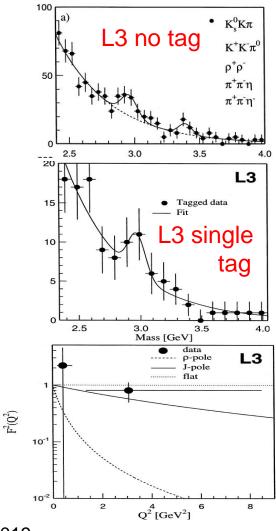
- We consider different options:
- No-tag events. Just a quarkonium decay and "nothing else". Huge statistics, but hardly visible because of huge background
- Single-tag events: good background suppression, signal statistics strongly reduced
 - $-\Theta > 6^{\circ}$ (ECAL, no electron track)
 - $\Theta > 10^{\circ}$ (ECAL + electron track)
- Double tag: fully reconstructed event, very low background, but extremely small signal statistics
 - Lumi+Lumi, Lumi+ECAL, ECAL+ECAL

Estimation of event number

Charmonium

name	No Tag	S Tag 6°	S Tag 10°	D Tag 6-6°	D Tag 6-1.9°	D Tag 1.9-1.9°
η_c	$1. \times 10^{9}$	5.3×10^{5}	1.7×10^{5}	7.6×10^{2}	1.2×10^4	8.6×10^{4}
χ_{c_0}	$2. \times 10^{8}$	6.5×10^{4}	2.2×10^{4}	6.3×10^{1}	$9. \times 10^{2}$	8.3×10^{3}
χ_{c_1}	$7. \times 10^{6}$	4.4×10^4	1.1×10^{4}	1.7×10^{2}	2.4×10^{3}	1.7×10^4
χ_{c_2}	9.5×10^{7}	3.1×10^{4}	9.8×10^{3}	5.4×10^{1}	7.2×10^{2}	6.7×10^{3}
$\eta_{c_D}(3840)$	2.6×10^{6}	2.5×10^{3}	7.8×10^{2}	5.7×10^{-1}	2.5×10^{1}	1.5×10^{2}
$\eta_c(2S)$	2.4×10^{8}	2.1×10^{5}	6.4×10^{4}	4.1×10^{2}	$6. \times 10^{3}$	4.1×10^{4}

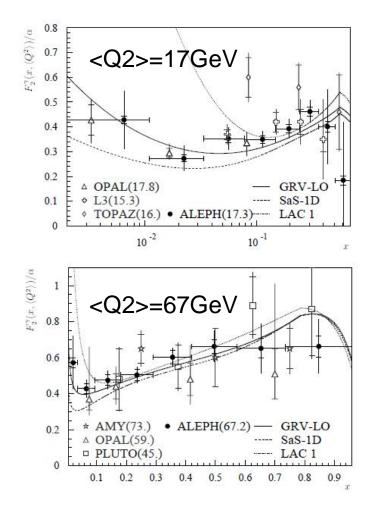
Bottomonium

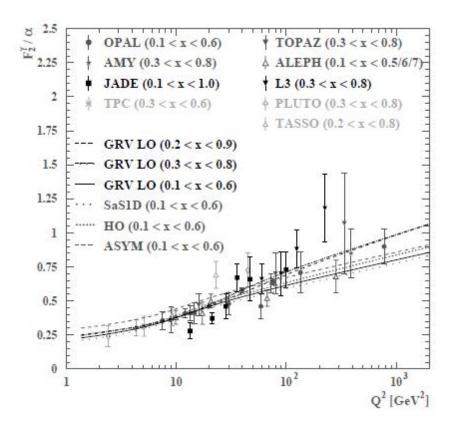

name	No Tag	S Tag 6°	S Tag 10°	D Tag 6-6°	D Tag 6-1.9°	D Tag 1.9-1.9°
$\eta_b(9400)$	1.3×10^{6}	1.4×10^{4}	3.9×10^{3}	1.1×10^{2}	$1. \times 10^{3}$	3.6×10^{3}
χ_{b_0}	9.6×10^{4}	5.2×10^{2}	1.4×10^{2}	2.7	$3. \times 10^{1}$	1.5×10^{2}
χ_{b_1}	3.9×10^{3}	5.1×10^{2}	1.3×10^{2}	6.6	5.3×10^{1}	1.4×10^{2}
χ_{b_2}	8.3×10^{4}	4.9×10^{2}	1.2×10^{2}	3.4	3.4×10^{1}	1.6×10^{2}
$\eta_{b_D}(10150)$	7.9×10^{2}	9.9	2.8	2.3×10^{-2}	4.3×10^{-1}	1.8
$\eta_b(9980)$	4.6×10^{5}	5.8×10^{3}	1.6×10^{3}	4.9×10^{1}	4.4×10^2	1.5×10^3

Reduce every number by a factor 5-10, to account for experimental acceptance

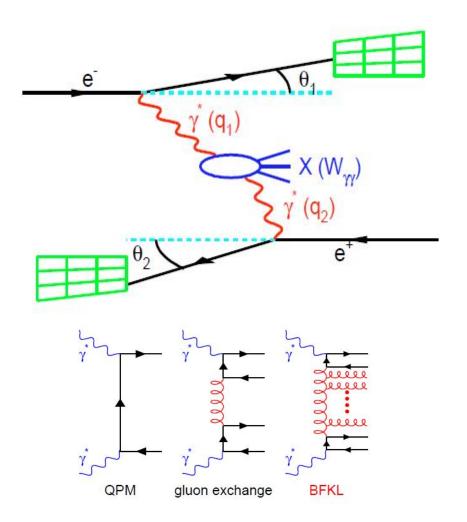
Charmonium substructure

- Exclusive charmonium production in single-tag events can be used to measure the transition form-factor
- $\sigma(\gamma\gamma \rightarrow R) \sim \Gamma\gamma\gamma F^2(Q^2)BW(W)$
- In VDM:


$$F(Q^2) = \frac{1}{1 + Q^2/\Lambda^2},$$
with $\Lambda^2 = M_V^2$, $V = \rho, \omega, \phi, J...$



Photon structure function $F_2^{\gamma}(x,Q^2)$


- Hadronic structure function in single-tag
- Can be extracted from $d^3\sigma/dQ^2dxdy$ $Q^2 = 2E_{beam}E_{tag}(1-\cos\theta_{tag}), \ x = Q^2/(Q^2+W^2)$
- Most difficult part is the reconstruction of the hadronic invariant mass W
- Required complicated unfolding procedure, detailed understanding of the detector

Structure function at LEP

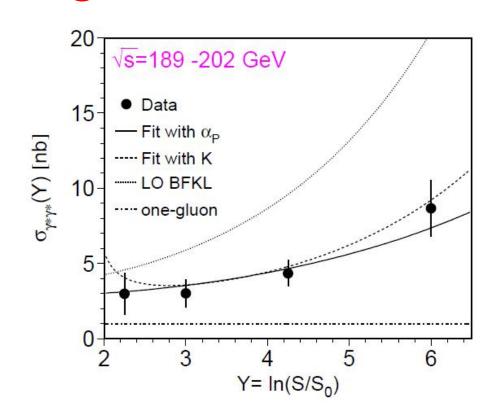
Double-tag $\gamma^*\gamma^*$ collisions

- Kinematics is fully defined by the tagged electrons
- No need of sophisticated unfolding procedure
- Statistics! Must tag electrons as close as possible to the beam line

Double-tag from L3

BFKL prediction:

$$\sigma_{\gamma^*\gamma^*} = \frac{\sigma_0}{Q_1 Q_2 Y} \left(\frac{s}{s_0}\right)^{\alpha_P - 1}$$


$$s_0 = \frac{KQ_1Q_2}{y_1y_2}$$
 , $Y = \ln(s/s_0)$

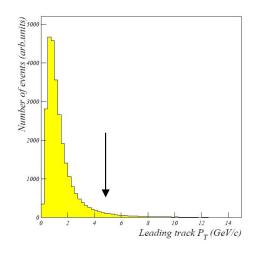
$$y_i = 1 - (E_i/E_b)\cos^2(\theta_i/2)$$

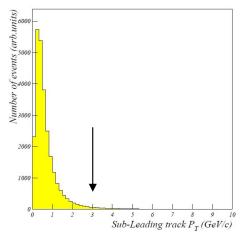
"Hard pomeron intercept"

$$(\alpha_P - 1) = (4\ln 2)N_c\alpha_s/\pi$$

- LO BFKL: $\alpha_P \sim 0.53$
- NLO BFKL: $\alpha_P \sim 0.17$

- L3 result (30<θ<66mrad)
- $\alpha_P = 0.36 \pm 0.02$


Summary


- The abundant gamma-gamma collisions will be not only background, but a rich source of physics studies
 - Higgs photoproduction discovery
 - QED tests
 - Perturbative QCD
 - Non-perturbative QCD
 - Hadron structure
- Many studies have been done at LEP, mostly statistically dominated
- Enormous CEPC luminosity will improve our knowledge by a huge factor
- It is vital to have the luminosity tagger as close as possible to the beam line

Thank you!

Spare slides

γγ→ττ→eμ events at 240 GeV

- 570 pb will provide 3B events with 5 ab⁻¹, or 165M events in e_μ final state
- We assume extremely severe kinematic cuts: P_T above 5 GeV/c for the leading track, and 3 GeV/c for the second track
- Tracks with θ>20°, total energy E<30 GeV to remove annihilation events