# The LHCb Calorimeter Upgrade Plan

The 2019 International Workshop on the High Energy Circular Electron Positron Collider IHEP - Beijing - China, 18-20 November 2019

Andreas Schopper

<u>LHCb</u>



# **The LHCb Experiment**



19 November 2019

ГНС

CEPC Workshop 2019 Beijing

Andreas Schopper

## LHCb: A dedicated flavor physics experiment at proton collider



## The LHCb Electromagnetic CALorimeter



### Current LHCb ECAL:

- Large Shashlik array ~50 m<sup>2</sup> with
   3312 modules and 6016 channels
- Modular wall-like structure of ~8x7m<sup>2</sup>, two halves open laterally
- Three sections (Inner, Middle, Outer) of cell size 4x4, 6x6, 12x12 cm<sup>2</sup>
- >  $\sigma(E)/E \sim 10\%/\sqrt{E \oplus 1\%}$



#### **Energy resolution with electrons**



19 November 2019



19 November 2019

## LHCb Upgrade I -> Detector upgrade to 40 MHz readout



19 November 2019

LHCD

# LHCb Upgrade I $\rightarrow$ A new detector...



- Less than 10% of the detector will be kept
- \* 100% of the readout electronics will be replaced
- \* NEW data acquisition system and data center



19 November 2019

# The long-term roadmap of the LHCb experiment







go ahead by LHC Committee and by the Research Board to proceed to a Framework Technical Design Report by summer 2021

major detector R&D started



19 November 2019



## The long-term luminosity evolution of LHCb



# Why upgrading LHCb: Physics motivation

## (Over-)constraining the CKM unitarity triangle



The picture before Upgrade I

The picture (not\*) expected after Upgrade II (\*if not all lines cross in same point → new physics!)



## LHCb ECAL Upgrade II



<u>2020 - 2023</u>:  $\rightarrow$  submit Technical Design Reports

- 2021: Framework TDR for Upgrade II including sub-detector "Consolidation" TDRs
- > 2023/24: Sub-detector **TDRs for Upgrade II**
- <u>LS3 in 2024/25</u>:  $\rightarrow$  **Consolidation**
- Replace modules around beam-pipe (~32 modules) compatible with L=2x10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>

## <u>LS4 in 2030/31</u>: → LHCb Upgrade II

- ➤ Rebuilt ECAL in high occupancy "belt-region" compatible with luminosity up to  $L \le 2x10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- Include timing information to mitigate multiple interactions/crossing





# **ECAL requirements for Upgrade II**

Overall requirements:

- ✓ sustain radiation doses of up to ~1MGy and  $\leq 6^{\cdot}10^{15}$ cm<sup>-2</sup> for 1MeV neq/cm<sup>2</sup> at 300 fb<sup>-1</sup>
- ✓ include a very fast component ~few 10<sup>th</sup> ps for pile-up mitigation
  - ➢ into sampling modules or/and

(1MGy = 100Mrad)

- ➤ with additional timing preshower
- ✓ keep good energy resolution of order  $\sigma(E)/E \sim 10\%/\sqrt{E} \oplus 1\%$
- ✓ handle **increased occupancy** by improving spatial resolution in inner & middle region
- ✓ respect dimensional **constraints of a module**: 12 x 12 cm<sup>2</sup> outer dimension



# Pile-up mitigation with very fast timing



## Pile-up conditions at Upgrade II:

- ✓ expect ~50 pp interactions per bunch crossing
- mean number of incorrect primary vertices giving rise to background hits can be reduced:
  - $\succ$  to 2.7 with 50 ps resolution
  - $\succ$  to 1.1 with 20 ps resolution

 need timing resolution of few 10<sup>th</sup> ps to reconstruct correct primary vertex

### Possible options:

- 1) dedicated timing layer in front of ECAL modules ("timing pre-shower") with either silicon layers or fast crystal layers
- 2) "intrinsic" timing resolution of ECAL module with ~few  $10^{th}$  of ps timing resolution



14

## **Possible options for new ECAL modules**

# Pros and cons of different options:



## Homogeneous Crystal:

- requires long crystal of
   ~40cm to contain 25 X<sub>0</sub>
- "given" Moliere Radius
- very good homogeneity
- potentially very good
   E-resolution (<10%)</li>
- large volume of crystal
   high cost

## Sampling Technologies



## Shashlik type module:

- can be made very compact ~15-20cm
- ➢ Moliere Radius "tunable"
- no rad. hard WLS fibers (yet) to transport light!
- challenging optimization to reach good E-resolution
- some cost optimization possible

Started generic R&D on spaghetti type module (SPACAL)



Spaghetti type module:

- can be made very compact
   ~15-20cm
- fibers scintillate AND transports light!
- Moliere Radius "tunable"
- challenging optimization to reach good E-resolution
- some cost optimization possible

<u>Lнс</u>р

19 November 2019

CEPC Workshop 2019 Beijing

(with Crystal Clear Collab.) Andreas Schopper



## Radiation hard scintillating crystal candidates: Garnet crystals

| CRYSTAL<br>CRYSTAL<br>CLEAR  | Y <sub>3</sub> Al <sub>5</sub> O <sub>12</sub> :Ce<br>(YAG)* | Lu <sub>3</sub> Al <sub>5</sub> O <sub>12</sub> : Ce<br>(LuAG)* | $   \begin{array}{c} \mathbf{Gd_{3}Al_{2}Ga_{3}O_{12}} \\ \mathbf{Ce} \\ \mathbf{(GAGG)}^{**} \end{array} $ | Lu <sub>2</sub> SiO <sub>5</sub> :Ce<br>(LSO) |
|------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| density (g/cm <sup>3</sup> ) | 4.57                                                         | 6.73                                                            | 6.63                                                                                                        | 7.4                                           |
| <b>X</b> <sub>0</sub> (cm)   | 3.5 cm                                                       | 1.3                                                             | 1.59                                                                                                        | 1.1                                           |
| Refraction<br>index          | 1.83                                                         | 1.84                                                            | 1.85                                                                                                        | 1.82                                          |
| $\Lambda_{\max}(nm)$         | 550                                                          | 535                                                             | 520                                                                                                         | 420                                           |
| LY @ RT<br>(ph/MeV)          | 35000                                                        | 25000                                                           | 50000                                                                                                       | 30000                                         |
| decay time (ns)              | 70 + slow<br>component                                       | 70 + slow<br>component                                          | 60 + slow<br>component                                                                                      | 40                                            |
| rise time (ps)               | 1590-137                                                     | 923-230                                                         | 497-72                                                                                                      | 59                                            |

*Lнср* гнср

19 November 2019

rise time ref.: S.Gundacker, NIM A 891 (2018) 42-52



• YAG  $1 \times 1 \times 100 \text{ mm}^3$ 

HC HC







Andreas Schopper

<u>LHCb</u>

# Radiation resistants of GAGG



- > GAGG crystals resist to radiation of  $\sim$ 1 MGy (100 Mrad)
- > YAG crystals tested up to >100 kGy (10 Mrad),
- ▶ Next radiation campaign with new samples early 2020



M. Lucchini et al. NIM a 816 (2016) 176-183

M. Lucchini et al. IEEE TNS 63 (2016) 586-590



# **R&D on timing properties of garnet crystals**

Decay-time properties: t<sub>d</sub>







- ✓ minimize spill-over by minimizing pulse length (25 ns LHC bunch spacing)
- $\checkmark$  the decay time can be parametrized by two components
- ✓ a shorter decay time and strong decrease of the slow component can be achieved by proper choice of Ce and Mg co-doping

• achieved  $t_d$  of 36 ns, optimization ongoing





# **R&D on timing properties of garnet crystals**

<u>Rise-time properties</u>: t<sub>r</sub>



M. Lucchini et al. NIM a 816 (2016) 176-183

- $\checkmark$  mitigate pile-up by minimizing rise time (several 10<sup>th</sup> pp-interactions per bunch crossing)
- $\checkmark$  the rise time can be parametrized by a single component
- $\checkmark$  a fast rise time and strong decrease of slow component can be achieved by proper choice of Mg co-doping

 $\blacktriangleright$  achieved t<sub>r</sub> of 72 ps, optimization ongoing





# Production of radiation hard scintillating crystal fibers

### Crystal growing by Czochralski method









Square fibers of 1mm x 1mm x 100mm

Fibers manufactured by cutting and polishing





FOMOS

19 November 2019

## 2018 prototype



## **SPACAL Prototypes**

Study energy resolution and timing properties as function of alloy, crystal type, geometry, cell size, segmentation, photodetector,

. . .



#### 2018 prototype tested at CERN:

- ✓ Cu-W alloy with density of 14.9 g/cm<sup>2</sup>
- $\succ$  20 cm long module to reach 25 X<sub>0</sub>
- $\blacktriangleright$  longitudinal segmentation: 10 cm + 10 cm
- ✓ 9 cells of 2 x 2 cm<sup>2</sup> with  $M_R \sim 1.5$  cm
- ➤ 1 cell of GAGG & 4 cells of YAG
- ➤ 4 cells of SCSF78 (KURARAY)

2019 prototype under test at DESY:

- ✓ pure W with modified geometry (fiber layout)
- ▶ reduced length of 14 cm ( $X_0 \sim 0.55$  cm)
  - ( $\rightarrow$  10 GeV  $\gamma$  mean free path ~0.7cm)
- Iongitudinal segmentation:
  - $4cm + 10cm (7X_0(\sim shower max at 10GeV) + 18X_0)$
- ✓ cell size of 1.5 x 1.5 cm<sup>2</sup> with  $M_R \sim 1.2$ -1.3 cm
  - $(\rightarrow \sim 95\%$  contained in cone of d~2.5 cm)
- ➤ 3 cells with GAGG & 6 with YAG







19 November 2019

CEPC Workshop 2019 Beijing

Andreas Schopper

## Time resolution measurements with prototypes



- Present ECal Shashlik module:
  - Readout PMT Hamamatsu R7899-20.

| Beam Energy [GeV] | PMT Bias [V] | Time Resolution [ps] |
|-------------------|--------------|----------------------|
| 20                | 800          | 69                   |
| 30                | 800          | 56                   |
| 30                | 750          | 57                   |
| 30                | 700          | 77                   |



- SpaCal GAGG cell:
  - Readout PMT Hamamatsu R12421.

| PMT Bias [V] | Time Resolution [ps] |  |  |
|--------------|----------------------|--|--|
| 630          | 85                   |  |  |
| 730          | 78                   |  |  |

> Timing resolution already in the right ballpark





19 November 2019

# **New (2019) prototype** (currently under test at DESY)





- Density: 19 g/cm3
- ➤ 2 sections: 4 + 10 cm (2 times 729 fibers)
- $\blacktriangleright$  Cell size: 1.5 × 1.5 cm<sup>2</sup>
- ➢ 6 YAG cells and 3 GAGG cells
- Fibre size:  $1 \times 1 \times 40/100 \text{ mm}^3$
- Each scintillating fibre coupled to an optical fibre
- ➤ Test with both, PMTs and SiPMs





Most compact SPACAL:

- ➢ pure W absorber and GAGG crystals
- > 25  $X_0$  with 14 cm length (short fibers)
- Moliere Radius 1.25 cm (cell size 1.5 cm)
  - Compare testbeam results with detailed simulation (incl. raytracing) to further optimize energy and timing resolution



19 November 2019

## **R&D on absorber materials**

- $\checkmark$  tune radiation length (X<sub>0</sub>) and shower width (M<sub>R</sub>)
  - > M<sub>R</sub> should be of same order than cell size
  - > X<sub>0</sub> should be as small as possible (short module = short fibers)

|                              | W    | Pb   | Cu   | GAGG | YAG  |
|------------------------------|------|------|------|------|------|
| Density [g/cm <sup>3</sup> ] | 19.3 | 11.4 | 8.96 | 6.7  | 4.6  |
| $X_0$ [cm]                   | 0.35 | 0.56 | 1.44 | 1.59 | 3.53 |
| M <sub>R</sub> [cm]          | 0.93 | 1.60 | 1.57 | 2.10 | 2.76 |

- ✓ pure tungsten has very small Moliere radius and small radiation length but problematic mechanical properties (brittle)
  - cannot be machined and therefore strongly limits possible absorber shapes
- ✓ Cu-W (25%-75%) alloy is available on the market with good mechanical properties Small Moliora Padius but relatively large radiation length (long module)
  - small Moliere Radius but relatively large radiation length (long module)
- ✓ Pb-W alloy allows for same Moliere radius as Cu-W but with smaller radiation length
  - > shorter module  $\rightarrow$  shorter fibers!
    - Lead-tungsten alloys have not yet been produced, R&D started
    - > New manufacturing technics for pure tungsten under investigation







- > LHCb is undergoing a major first upgrade at present with a second upgrade foreseen in 2029.
- $\succ$  The electromagnetic calorimeter needs some consolidation of the most inner region by 2023 compatible with the running conditions after Upgrade II, which requires R&D on radiation hard and fast ECAL modules.
- $\succ$  In Long Shutdown 4 (LS4) a major upgrade of the ECAL will be required to cope with the increased luminosity, the harsh radiation and pile-up conditions, by replacing a significant part of the modules with new technologies.
- ➤ Generic R&D and prototyping has started to develop radiation hard and fast sampling ECAL modules of SPACAL type, with first encouraging results.
- $\succ$  New groups interested in contributing to the R&D (also within new EP R&D program) are most welcome!

#### ECAL under construction in the years 2000+







