Production of doubly heavy hadrons at the Z pole

Xu-Chang Zheng(郑绪昌)

Department of Physics, Chongqing University

In collaboration with Chao-Hsi Chang and Xing-Gang Wu

CEPC WS 2019@IHEP

Outline

- **1. Introduction**
- 2. Production of doubly heavy hadrons at e⁺e⁻ colliders
- 3. NLO fragmentation functions for doubly heavy mesons
- 4. Conclusions

1. Introduction

Doubly heavy hadrons:

- Heavy quarkonia: $c\bar{c}$, $b\bar{b}$ (J/ Ψ , Υ ...)
- Doubly heavy-flavored mesons: $c\overline{b}(B_c, B_c^*, \cdots)$
- Doubly heavy baryons: $\Xi_{cc}, \Xi_{bc}, \Xi_{bb} \cdots$
- Production: perturbative, non-perturbative QCD
- Decay: weak interaction

The study of doubly heavy hadrons can test the NRQCD.

3

Advantages of the production at e⁺e⁻ colliders:

The center-of-mass system of the process is known

Angle distributions and forward-backward asymmetry of doubly heavy hadrons have proper meaning in understanding the production.

• There are less backgrounds at an e⁺e⁻ collider

An e⁺e⁻ collider is a good platform for precision measurements. **Running at the Z pole:**

- Z-resonance effect
- CEPC

2. Production of doubly heavy hadrons

(d)

• LO calculation

(c)

$$d\sigma(e^{+} + e^{-} \rightarrow Bc + b + \overline{c})$$

$$= \sum_{n} d\hat{\sigma}(e^{+} + e^{-} \rightarrow c\overline{b}[n] + b + \overline{c}) \langle O^{Bc}(n) \rangle \qquad \text{NRQCD factorization}$$
Short-distance coefficients Long-distance matrix elements

Xu-Chang Zheng(CQU)

Production of doubly heavy hadrons

5

Numerical results

Phys. Rev. D 93, 034019, (2016), X.-C. Zheng, C.-H. Chang et al.

States	σ(pb)	Events/year	States	σ(fb)	Events/year
$B_{c} ({}^{1}S_{0})$	2.73	2.7×10^{6}	B_{c} (${}^{1}S_{0}$)	0.47	4.7×10^{2}
$B_{c}^{*}({}^{3}S_{1})$	3.82	3.8×10^{6}	$B_{c}^{*}({}^{3}S_{1})$	0.72	7.2×10^{2}
$B_{c}^{**}({}^{1}P_{1})$	0.27	2.7×10^{5}	$B_{c}^{**}({}^{1}P_{1})$	0.05	50
$B_{c}^{**}({}^{3}P_{1})$	0.16	1.6×10^{5}	$B_c^{**}({}^{3}P_1)$	0.03	30
$B_{c}^{**}({}^{3}P_{2})$	0.34	3.4×10^{5}	$B_{c}^{**}({}^{3}P_{2})$	0.07	70
$B_{c}^{**}({}^{3}P_{2})$	0.37	3.7×10^{5}	$B_{c}^{**}({}^{3}P_{2})$	0.07	70

Cross sections at the Z pole with $L=10^{35}cm^{-2}s^{-1}$

Cross sections at $\sqrt{s} = 250 GeV$ with L=10³⁵ cm⁻² s⁻¹

- The Z-resonance effect is important for studying Bc and its excited states
- The luminosity of the e^+e^- collider should be $10^{35-36}cm^{-2}s^{-1}$

6

Phys. Rev. D 93, 034019, (2016), X.-C. Zheng, C.-H. Chang et al.

The angle distributions are forwardbackward asymmetric.

Xu-Chang Zheng(CQU)

2019/11/19

Production of doubly heavy hadrons at e+e- colliders

Phys. Rev. D 93, 034019, (2016), X.-C. Zheng, C.-H. Chang et al.

The energy distributions.

Xu-Chang Zheng(CQU)

2019/11/19

Production of doubly heavy baryons

1) Production of diquark

2) The diquark fragments into the doubly heavy baryon

Production of doubly heavy hadrons

9

Phys. Rev. D 93, 034019, (2016), X.-C. Zheng, C.-H. Chang et al.

States	σ(pb)	Events/year
Ξ _{cc}	0.52	5.2×10^{5}
Ξ_{bc}	1.37	1.4×10^{6}
Ξ _{bb}	0.05	$5.0 imes 10^{4}$

Cross sections at the Z pole with $L=10^{35}cm^{-2}s^{-1}$

Differential angle distributions

The angle distributions are also forward-backward asymmetric.

Production of doubly heavy hadrons

Forward-backward asymmetry:

X.-C. Zheng, C.-H. Chang et al, 2019.

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}.$$

 $sin^2 \theta_{eff}^{f}$ can be determined through measuring the forward-backward asymmetry of the doubly heavy-flavored hadrons.

Xu-Chang Zheng(CQU)

Production of doubly heavy hadrons

Left-right forward-backward asymmetry:

X.-C. Zheng, C.-H. Chang et al, 2019.

$$A_{LR}^{FB} = \frac{\sigma_{LF} - \sigma_{LB} - \sigma_{RF} + \sigma_{RB}}{\sigma_{LF} + \sigma_{LB} + \sigma_{RF} + \sigma_{RB}}$$

 $sin^2 \theta_{eff}^f$ can be determined through measuring the left-right-forwardbackward asymmetry of the doubly heavy-flavored hadrons.

Xu-Chang Zheng(CQU)

Production of doubly heavy hadrons

- NLO calculations for Bc and Bc*
- To see the changes of the physical observables from the LO calculations to the NLO calculations.
- > To see how the dependence on the renormalization scale

changes after including the NLO QCD corrections.

Numerical results

Sci. China-Phys.Mech. Astron. 61, 031012,(2018), X.-C. Zheng, C.-H. Chang et al.

μ	$\alpha_s(\mu)$	$\sigma_{\rm LO}({\rm pb})$	$\sigma_{\rm NLO}({\rm pb})$	$\sigma_{\rm NLO}/\sigma_{\rm LO}$
$2m_b$	0.180	1.58	2.38	1.51
$m_z/2$	0.132	0.85	1.58	1.86

Cross section of Bc

μ	$\sigma_{\rm LO}({\rm pb})$	$\sigma_{\rm NLO}({\rm pb})$	$\sigma_{\rm NLO}/\sigma_{\rm LO}$
$2m_b$	2.20	2.93	1.33
$m_z/2$	1.18	2.06	1.74

Cross section of Bc*

The NLO corrections are significant!

The dependence on μ is weaken significantly due to NLO corrections.

Sci. China-Phys.Mech. Astron. 61, 031012,(2018), X.-C. Zheng, C.-H. Chang et al.

- The K-factor changes very little with different θ;
- The NLO corrections change the energy distributions significantly.

3. NLO fragmentation functions for doubly heavy mesons

Fragmentation approach

> NRQCD factorization $d\sigma(e^+ + e^- \to Bc + b + \overline{c})$ $= \sum_n d\sigma(e^+ + e^- \to (c\overline{b})[n] + b + \overline{c}) \langle O^{Bc}(n) \rangle$ Energy scales: \sqrt{s}, m_Q

Log-terms appear in short-distance coefficients:

$$\alpha_{\rm s}^m \sum_{\rm n=0}^{\infty} \alpha_{\rm s}^n \ln^n (s / m_Q^2)$$

Collinear gluon emission

Spoil or weak the convergence of the series

 $\ln(p_t^2/m_Q^2)$ appearing in the production at a hadron collider

Xu-Chang Zheng(CQU)

Production of doubly heavy hadrons

Perturbative QCD factorization
$$d\sigma(e^{+} + e^{-} \rightarrow Bc(p) + b + \overline{c})$$

$$= \sum_{i} d\hat{\sigma}(e^{+} + e^{-} \rightarrow i + X)(p / z, \mu_{F}) \otimes D_{i \rightarrow Bc}(z, \mu_{F}) + O(m_{Q}^{2} / s)$$
NRQCD factorization:
$$D_{i \rightarrow Bc}(z, \mu_{F0}) = \sum_{n} d_{i \rightarrow c\overline{b}[n]}(z, \mu_{F0}) \langle O^{Bc}(n) \rangle$$

$$\mu_{F0} = O(m_{Q})$$
Involving $\ln(\mu_{F0}^{2}/m_{Q}^{2})$
Evolution of fragmentation functions
$$\frac{d}{d \ln \mu_{F}^{2}} D_{i \rightarrow Bc}(z, \mu_{F}) = \sum_{j} P_{ij}(z / y, \alpha_{s}(\mu_{F})) \otimes D_{i \rightarrow Bc}(y, \mu_{F})$$

$$P_{ij}(z, \alpha_{s}(\mu_{F})) = P_{ij}^{(0)}(z) \frac{\alpha_{s}(\mu_{F})}{2\pi} + P_{ij}^{(1)}(z) \left(\frac{\alpha_{s}(\mu_{F})}{2\pi}\right)^{2} + O(\alpha_{s}^{3})$$
Collinear log-terms have been resumed through the DGLAP evolution.

Xu-Chang Zheng(CQU)

Production of doubly heavy hadrons

- LO fragmentation functions for the Bc production
 - Extracting from the LO calculation of process $Z^0 \rightarrow Bc + b + \overline{c}$

C.-H. Chang, Y.-Q. Chen, Phys. Rev. D 46, 3845, (1992);

• Calculating from the definition:

J.-P. Ma, Phys. Lett. B 332, 398, (1994);

- There were no NLO results for $D_{i \rightarrow Bc}(z, \mu_F)$ before our calculation.
- In order to obtain the theoretical predictions under the fragmentation approach up to NLO QCD accuracy, the NLO results for $D_{i \rightarrow Bc}(z, \mu_F)$ are needed.

Fragmentation function calculation

Based on the definition of FFs by Collins and Soper.

Nucl. Phys. B 194, 445, (1982).

LO fragmentation functions:

$$\begin{split} &D_{b\to B_c}^{\rm LO}(z) \\ &= \frac{2\alpha_s^2 z(1-z)^2 |R_S(0)|^2}{81\pi r_c^2 (1-r_b z)^6 M^3} [6-18(1-2r_c)z+(21-74r_c+68r_c^2)z^2 \\ &-2r_b(6-19r_c+18r_c^2)z^3+3r_b^2(1-2r_c+2r_c^2)z^4], \end{split}$$

$$\begin{split} D^{\text{LO}}_{\overline{b} \to B^*_c}(z) \\ &= \frac{2\alpha_s^2 z (1-z)^2 |R_s(0)|^2}{27\pi r_c^2 (1-r_b z)^6 M^3} [2-2(3-2r_c)z+3(3-2r_c+4r_c^2)z^2 \\ &-2r_b(4-r_c+2r_c^2)z^3+r_b^2 (3-2r_c+2r_c^2)z^4]. \end{split}$$

LO cut diagrams:

NLO corrections

Typical NLO cut diagrams

54 virtual cut diagrams, 72 real cut diagrams.

Virtual corrections

Tensor reduction, IBP reduction

Many integrals containing an eikonal line, e.g,

$$\int \frac{d^{D}l}{[(l-p_{1})^{2}-m_{1}^{2}+i\varepsilon][(l-p_{2})^{2}-m_{2}^{2}+i\varepsilon][(l-p_{3})^{2}-m_{3}^{2}+i\varepsilon](l\cdot n+i\varepsilon)}$$

Real corrections

UV and IR divergences!

$$D_{\overline{b} \to Bc}^{real}(z) = \int N_{CS} d\phi_{real} (A_{real} - A_S) + \int N_{CS} d\phi_{real} A_S$$

Calculated in
4 dimensions Calculated in
d dimensions

Various types of subtraction terms need to be integrated!

Xu-Chang Zheng(CQU)

Renormalization

Renormalization of QCD:

$$\begin{split} \delta Z_2^{OS} &= -C_F \frac{\alpha_s(\mu_R)}{4\pi} \left[\frac{1}{\epsilon_{UV}} + \frac{2}{\epsilon_{IR}} - 3 \ \gamma_E + 3 \ \ln \frac{4\pi \mu_R^2}{m^2} + 4 \right], \\ \delta Z_m^{OS} &= -3 \ C_F \frac{\alpha_s(\mu_R)}{4\pi} \left[\frac{1}{\epsilon_{UV}} - \gamma_E + \ln \frac{4\pi \mu_R^2}{m^2} + \frac{4}{3} \right], \\ \delta Z_3^{OS} &= \frac{\alpha_s(\mu_R)}{4\pi} \left[(\beta_0' - 2C_A) \left(\frac{1}{\epsilon_{UV}} - \frac{1}{\epsilon_{IR}} \right) \right. \\ &\left. - \frac{4}{3} T_F \left(\frac{1}{\epsilon_{UV}} - \gamma_E + \ln \frac{4\pi \mu_R^2}{m_c^2} \right) \right. \\ &\left. - \frac{4}{3} T_F \left(\frac{1}{\epsilon_{UV}} - \gamma_E + \ln \frac{4\pi \mu_R^2}{m_b^2} \right) \right], \\ \delta Z_g^{\overline{MS}} &= -\frac{\beta_0}{2} \frac{\alpha_s(\mu_R)}{4\pi} \left[\frac{1}{\epsilon_{UV}} - \gamma_E + \ln (4\pi) \right], \end{split}$$
(71)

Renormalization of the operator:

$$\begin{split} D_{\overline{b} \to c\overline{b}[n]}^{\text{operator}}(z) \\ &= -\frac{\alpha_s(\mu_R)}{2\pi} \left[\frac{1}{\epsilon_{UV}} - \gamma_E + \ln (4\pi) + \ln \frac{\mu_R^2}{\mu_F^2} \right] \\ &\times \int_z^1 \frac{dy}{y} P_{\overline{b}\overline{b}}(y) D_{\overline{b} \to c\overline{b}[n]}^{\text{LO}}(z/y), \end{split}$$

NLO fragmentation functions

10 18 LO(µ_=2m_) $LO(\mu_{p}=2m_{s})$ $NLO(\mu_{=}=2m)$ 14 ... NLO(µ_=m_+2m 12 6 $\mathrm{D}_{\overline{b} \to B^*_c}(\mathrm{z})$ $\mathrm{D}_{\overline{b}
ightarrow B_c}(\mathrm{z})$ 2 The second s 0.5 0.6 0.7 0.8 0.9 0 1 0.2 04 0.3 0.3 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.4 \mathbf{Z} \mathbf{Z} $D_{\overline{b}\to B_c^*}(z,\mu_{F0}=m_b+2m_c)$ $D_{\overline{h}\to B_c}(z,\mu_{F0}=m_b+2m_c)$

These fragmentation functions can be studied at the CEPC.

Xu-Chang Zheng(CQU)

Production of doubly heavy hadrons

2019/11/19 23

Phys. Rev. D 100, 034004, (2019),

X.-C. Zheng, C.-H. Chang, X.-G. Wu.

Initial fragmentation functions

Fragmentation probability and average value of z

$$P = \int_0^1 dz D(z), \quad \langle z \rangle = \frac{\int_0^1 dz \, z \, D(z)}{\int_0^1 dz \, D(z)},$$

$$\overline{b} \rightarrow Bc$$

b	\rightarrow	B_c^*
---	---------------	---------

μ_R	$P \times 10^4 (LO)$	$P \times 10^4$ (NLO)	$\langle z \rangle$ (LO)	$\langle z \rangle$ (NLO)
$2m_c$	3.82	3.14	0.68	0.70
$m_b + 2m_c$	2.05	2.73	0.68	0.69

μ_R	$P \times 10^4 (LO)$	$P \times 10^4$ (NLO)	$\langle z \rangle$ (LO)	$\langle z \rangle$ (NLO)
$2m_c$	5.36	2.91	0.73	0.77
$m_b + 2m_c$	2.89	3.25	0.73	0.74

$c \rightarrow Bc$

μ_R	$P \times 10^{6}(LO)$	$P \times 10^{6}$ (NLO)	$\langle z \rangle$ (LO)	$\langle z \rangle$ (NLO)
$2m_b$	4.95	8.07	0.51	0.51
$2m_b + m_c$	4.63	7.72	0.51	0.51

$$c \rightarrow B_c^*$$

μ_R	$P \times 10^{6} (LO)$	$P \times 10^{6}$ (NLO)	$\langle z \rangle$ (LO)	$\langle z \rangle$ (NLO)
$2m_b$	4.28	5.75	0.55	0.54
$2m_b + m_c$	4.00	5.57	0.55	0.54

The fragmentation functions at the scale of m_Z

 Obtained through the DGLAP evolution from the fragmentation functions at the initial factorization scale.

Xu-Chang Zheng(CQU)

Production of doubly heavy hadrons

Bc and Bc* production at the Z pole

Phys. Rev. D 100, 034004, (2019), X.-C. Zheng, C.-H. Chang, X.-G. Wu.

LO,NLO: fixed-order approach

- LPO: fragmentation approach, no DGLAP evolution
- LP: fragmentation approach, evolved with DGLAP equation

Phys. Rev. D 100, 014005, (2019), X.-C. Zheng, C.-H. Chang, X.-G. Wu.

NLO fragmentation functions for $c \rightarrow J / \psi$ and $b \rightarrow \Upsilon$

Conclusions

The production of doubly heavy hadrons at an e⁺e⁻ collider running at the Z pole is studied;

sin²θ^f_{eff} can be determined through measuring the asymmetries of the production of the doubly heavy hadrons at the Z pole;
 The fragmentation functions for a heavy quark to a doubly heavy

hadron can be studied at the CEPC running at the Z pole.

Thank you!

Xu-Chang Zheng(CQU)

Production of doubly heavy hadrons