GEANT4 simulation of the dual-readout calorimeter for the CEPC

Minsoo Kim¹, Sanghyun Ko², Sehwook Lee³, Hwidong Yoo¹

19 Nov 2019

¹Yonsei University, ²Seoul National University (SNU), ³Kyungpook National University (KNU)

Computing resource provided by KISTI & KNU

www.kisti.re.kr

Dual-readout calorimeter

The dual-readout calorimetry

- The major difficulty of measuring energy of hadronic shower comes from the fluctuation of EM fraction of a shower, f_em.
- f_em can be measured by implementing two different channels with different h/e response in a calorimeter.

$$\begin{split} S &= E \left[f_{em} + \frac{1}{(e/h)_S} (1 - f_{em}) \right], \\ C &= E \left[f_{em} + \frac{1}{(e/h)_C} (1 - f_{em}) \right]. \\ f_{em} &= \frac{(h/e)_C - (C/S)(h/e)_S}{(C/S)[1 - (h/e)_S] - [1 - (h/e)_C]} \end{split} \quad \begin{aligned} & \cot \theta = \frac{1 - (h/e)_S}{1 - (h/e)_C} \equiv \chi, \\ E &= \frac{S - \chi C}{1 - \chi}. \end{split}$$

- Dual-readout calorimeter offers high-quality energy measurement for both EM particles and hadrons.
- Excellent energy resolution for hadrons can be achieved by measuring f_em and correcting the energy of hadron event-by-event.

GEANT4 simulation setup (1)

GEANT4 simulation setup – Optical physics

Optical cross-talk correction

Optical cross-talk (S \rightarrow C) correction

- Optical X-talk can occur since the thickness of SiPM is not zero.
- X-talk effect from Cerenkov to scintillation channel is minimal, however the effect from scintillation to Cerenkov channel may cause visible effects.
- X-talk effect was checked by simulating 20 GeV e- events, by turning off Cerenkov effect while keeping scintillation effect on.
- X-talk is corrected by applying cut-off for Cerenkov channel with detected time later than 34ns.

Calibration procedure using 20GeV e- events

- Using 1cm x 1cm e- beam perpendicular to the tower, estimate
 - 1. The total energy deposit located in the tower.
 - 2. # of p.e. counted from Cerenkov channel in the tower.
 - 3. # of p.e. counted from scintillation channel in the tower.
- From the energy deposit located in the tower & p.e. counted from each channel, eventually the amount of response per GeV of the tower can be estimated.
- Repeat for every tower in η direction.

Energy response for e- events

- Energy response of dual-readout calorimeter is estimated using calibrated towers.
- Used 1cm x 1cm e- beams with $(\Delta \theta, \Delta \phi) = (1.5^{\circ}, 1.0^{\circ})$ incident angle.
- Response of Cerenkov, scintillation channel and sum of two channels are fitted with Gaussian.

EM energy resolution

EM energy resolution

- Measured EM energy resolution with 5 to 110 GeV electrons.
- Energy resolution is scaled to $1/\sqrt{E}$.
- Stochastic & constant term of the energy resolution can be obtained by linear fitting.
- Stochastic term of energy resolution to EM shower is ~ 11%.
- Measured energy is linear to electron energy within ± 1%.

Sanghyun Ko (SNU)

Light attenuation correction (1)

Light attenuation correction

- π+ can go deep inside tower compared to e-.
- Although filters are applied to S channel to mitigate the light attenuation, energy measured from S channel should be corrected to take into account of attenuation properly.
- Can be corrected by measuring the shower depth event-by-event, using time structure of the scintillation signal.

19 Nov 2019

Shower depth as a function of time

Shower depth x can be represented as a function of detection time

 $t_{c} = \frac{1}{0.3 \, m/ns} x + \frac{1.8 \, m}{0.3 \, m/ns}$ $TOF \text{ of } \pi + \text{ in vacuum/tower}$ $t_{v} = \frac{2.5 \, m - x}{v}$ Propagation time of optical photons $t_{max} = t_{v} + t_{c} = \frac{2.5 - x}{v} + \frac{x}{0.3 \, m/ns} + \frac{1.8 \, m}{0.3 \, m/ns}$ Detection time

Estimation of average optical photon velocity

 The average velocity of optical photons (v) can be estimated by calculating effective radiation length of the tower & exploiting well-known longitudinal profile of EM showers.

	Cu	PS	РММА				
Volume (%)	65.1	17.45	17.45				
X0 (cm)	1.436	41.31	34.07				
X0_eff (cm)	2.1613						

Light attenuation correction

Estimated avg velocity of optical photons using 20GeV e- evts.

 $v = \frac{2.5 \, m - 0.1368 \, m}{t_{max} - \frac{0.1368 \, m}{0.3 \, m/ns} - \frac{1.8 \, m}{0.3 \, m/ns}}$

- Shower depth can be estimated event-by-event.
- Average measured energy shows exponential dependency on the depth of a shower.

 $E = E_{6.33 X_0} \exp \frac{x - 6.33 X_0}{\lambda_{eff}}$

Removing the exponential term corrects the attenuation loss.

Dual-readout correction constant

Estimating dual-readout correction constant χ using 20GeV $\pi +$

- Starting from initial values of (h/e)_C & (h/e)_S, calculate f_em.
- Using calculated f_em, the relation between energy response & f_em can be profiled for C & S channel.
- Linear fitting of profiled relation returns h/e of each channel.
- Estimated h/e of each channel eventually converges while repeating above steps.
- Dual-readout correction constant can be calculated from h/e.

$$f_{\rm em} = \frac{(h/e)_C - (C/S)(h/e)_S}{(C/S)[1 - (h/e)_S] - [1 - (h/e)_C]}.$$

 $\frac{h}{e} = \frac{p_0}{p_0 + p_1}$ $\cot \theta = \frac{1 - (h/e)_S}{1 - (h/e)_S} \equiv \chi$

Sanghyun Ko (SNU)

19 Nov 2019

Energy response for π + events

- Energy response of dual-readout calorimeter for π+ beam is estimated.
- Both light attenuation correction & dual-readout correction are applied.
- Dual-readout correction improved the linearity of energy response.

Hadronic energy resolution (preliminary results)

- Measured hadronic energy resolution with 5 to 110 GeV pions.
- Energy resolution is scaled to $1/\sqrt{E}$.
- Stochastic & constant term of the energy resolution can be obtained by linear fitting.
- Stochastic term of energy resolution to hadronic shower ~ 21%.

Sanghyun Ko (SNU)

High-granularity demonstration

High-granularity demonstration of the dual-readout calorimeter using $\pi^{\circ} \rightarrow \gamma \gamma$

With 1.5mm interval between fibers, the dual-readout calorimeter is able to detect energy deposits of γγ from 60GeV π° as separated clusters (corresponds to lorentz factor γ ~ 444, opening angle θ ~ 3.5 mil).

Summary

Dual-readout calorimeter for the CEPC

- Dual-readout calorimeter provides a method to measure energy of both EM & hadronic particles with excellent energy resolution.
- GEANT4 simulation of dual-readout calorimeter is performed in great detail.
- Predicted EM energy resolution of GEANT4 simulation is 11%/√E with almost 0 constant term, and the calorimeter responses are linear within 1% uncertainty.
- To take into account the attenuation properly, the depth of shower maximum is measured event-by-event and light attenuation correction is applied to scintillation channel.
- According to GEANT4 simulation results, the dual-readout calorimeter can achieve 21%/VE with linear calorimeter response for single hadrons.
- The dual-readout calorimeter is expected to be able to distinguish $\gamma\gamma$ from 60 GeV π° by high granularity design.

Future plans

- Measure energy resolution to multi-particle state such as jet.
- Reconstruct W & Z using W/Z → jj events.
- Measure position resolution

Dual-readout correction constant & h/e from convergence

lter	0	1	2	3	4	5	6	7	8
(h/e)_C	0.21	0.2545	0.2463	0.2465	0.2465	0.2466	0.2483	0.2445	0.2484
(h/e)_S	0.77	0.8452	0.8378	0.8387	0.8348	0.8424	0.8366	0.8420	0.8342
Х	0.291	0.2076	0.2152	0.2140	0.2192	0.2092	0.2174	0.2091	0.2206

Light attenuation correction

- The detection time of optical photons can be represented as the sum of TOF of π+ & propagation time of optical photons within fibers.
- Average velocity of optical photons can be estimated by exploiting well-known longitudinal profile of EM showers.
- Note: TOF of π+ in vacuum is ignored in the graph.

Sanghyun Ko (SNU)

Optical cross-talk

Optical cross-talk of Cerenkov & scintillation channels

Sanghyun Ko (SNU)

19 Nov 2019

Difficulty of HCAL

Difficulty of hadronic calorimetry

- Hadronic (non-EM) component of a shower is consist of:
 - Charged hadrons (π, K, ...) 20 %
 - Nuclear fragments (p)
 25 %
 - Neutrons & soft γ's
 15 %
 - Break-up of nuclei (invisible)
 40 %
- The main fluctuation is EM fraction fluctuation between $\pi \pm \& \pi 0$ (yy).
- Secondary fluctuation is nuclear binding energy losses.

Sanghyun Ko (SNU)

19 Nov 2019

Scintillation & Cerenkov fibers

The main difference between scintillation & Cerenkov fibers

- Scintillation fiber
 - Emits red light in random directions.
 - Responds to both EM & hadronic particles.
- Cerenkov fiber
 - Emits blue light in a direction collimated to the incident particle.
 - Responds to mainly EM particles only.

Schematic diagram of how scintillation & Cerenkov fiber responds to each fiber.

Picture of scintillation (left) and Cerenkov (right) fibers emitting lights.

Sanghyun Ko (SNU)

Material properties

Photon energy

• The energy window of optical photons is set to 900-300 nm (1.37760-4.13281 eV) with 25 nm step.

PMMA

- RI
 - refractiveindex.info (G. Beadie, M. Brindza, R. A. Flynn, A. Rosenberg, and J. S. Shirk. Refractive index measurements of poly(methyl methacrylate) (PMMA) from 0.4-1.6µm, Appl. Opt. 54, F139-F143 (2015))
- Attenuation
 - sciencedirect (Silvio Abrate, Handbook of Fiber Optic Data Communication (4th Ed.), 2013)
 - Eska POF manufacturer

Fluorinated polymer

- RI
 - RD52 paper (N. Akchurin, et al., Nuclear Instruments and Methods in Physics Research, A762 (2014), pp. 100-118.)
 - Set to single value (1.42).

Polystyrene

- RI
 - refractiveindex.info (N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009))
- Attenuation
 - J. Applied Physics (T. Kaino, M. Fujiki, and S. Nara, Low-loss polystyrene core-optical fibers, Journal of Applied Physics 52, 7061 (1981))
 - LHCb-PUB-2015-011 (SCSF-78 for LHCb Sci-Fi tracker R&D TDR)
 - kuraray scintillating fiber manufacturer (SCSF-78)

Material properties

Polystyrene

- Emission spectrum, decay constant
 - kuraray scintillating fiber manufacturer (SCSF-78)
 - Decay constant = 2.8 ns
- Birks constant
 - k_B = 0.126 mm/MeV

Glass, Air

- RI
 - **1.52, 1.0**
- Attenuation
 - 420 cm, N/A

PDE (Photon Detection Efficiency)

Hamamatsu S13615-1025N series

Text

formula