$H \rightarrow b \bar{b}$ at N3LO accuracy

Roberto Mondini, University at Buffalo

RM, Matthew Schiavi, Ciaran Williams, JHEP 1906 (2019) 079 RM and Ciaran Williams, JHEP 1906 (2019) 120

Motivation

The $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ decay channel has the largest BR for the $125-\mathrm{GeV}$ Higgs

Can be accessed at the LHC through associated (VH) production or gluonfusion at high transverse momentum

Motivation

At future lepton colliders such as the CEPC, most Higgs couplings will be measured at the 1% level

The increasing experimental precision mandates a similar increase in the precision of the corresponding theoretical predictions

Property	Estimated Precision	
m_{H}	5.9 MeV	
Γ_{H}	3.1%	
$\sigma(Z H)$	0.5%	
$\sigma(\nu \bar{\nu} H)$	3.2%	
Decay mode	$\sigma(Z H) \times \mathrm{BR}$	BR
$H \rightarrow b \bar{b}$	0.27%	0.56%
$H \rightarrow c \bar{c}$	3.3%	3.3%
$H \rightarrow g g$	1.3%	1.4%
$H \rightarrow W W^{*}$	1.0%	1.1%
$H \rightarrow Z Z^{*}$	5.1%	5.1%
$H \rightarrow \gamma \gamma$	6.8%	6.9%
$H \rightarrow Z \gamma$	15%	15%
$H \rightarrow \tau^{+} \tau^{-}$	0.8%	1.0%
$H \rightarrow \mu^{+} \mu^{-}$	17%	17%
$H \rightarrow$ inv	-	$<0.30 \%$

CEPC CDR Oct 18

Overview of the calculation

$$
\Gamma_{H \rightarrow b \bar{b}}=\Gamma_{H \rightarrow b \bar{b}}^{\mathrm{LO}}+\Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{NLO}}+\Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{NNLO}}+\Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}}+\Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 4 \mathrm{LO}}+\ldots
$$

Inclusively known up to:

- N4LO QCD [Baikov, Chetyrkin, Kuhn hep-ph/0511063]
- NLO EW [Dabelstein, Hollik (1992); Kataev hep-ph/9708292]
- Mixed QCDxEW [Kataev hep-ph/9708292; Mihaila, Schmidt, Steinhauser 1509.02294] (also QCDxEW master integrals for Htt coupling [Chaubey, Weinzierl 1904.00382])

Differentially:

- NNLO QCD [Anastasiou, Herzog, Lazopoulos 1110.2368; Del Duca, Duhr, Somogyi, Tramontano, Trócsányi 1501.07226; Bernreuther, Cheng, Si 1805.06658]
- Interfaced to VH production at NNLO QCD [Ferrera, Somogyi, Tramontano 1705.10304; Caola, Luisoni, Melnikov, Röntsch 1712.06954; Gauld, Gehrmann-De Ridder, Glover, Huss, Majer 1907.05836]

Aim: provide fully-differential predictions at N3LO QCD accuracy

Overview of the calculation

- Treat the bottom quark as massless
- Focus on $\mathrm{y}_{\mathrm{b}}{ }^{2}$ terms
in the full theory
[Primo, Sasso, Somogyi,
Tramontano 1812.07811]

$$
\begin{aligned}
\Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}}= & y_{b}^{2} A_{b}+\alpha_{s} y_{b}^{2} B_{b} \\
& +\alpha_{s}^{2}\left(y_{b}^{2} C_{b}+y_{b} y_{t} C_{b t}\right) \\
& +\alpha_{s}^{3}\left(y_{b}^{2} D_{b}+y_{b} y_{t} D_{b t}+y_{t}^{2} D_{t}\right)
\end{aligned}
$$

$+\mathcal{O}\left(\alpha_{s}\right)$ corrections
Ongoing work to include neglected terms (as well as EW and QCDxEW)

Overview of the calculation

Differential N3LO coefficient:

$$
\begin{aligned}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{~L}}}{d \mathcal{O}_{m}}= & \int d \Gamma_{H \rightarrow b \bar{b}}^{V V V} F_{2}^{m}\left(\Phi_{2}\right) d \Phi_{2} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V} F_{3}^{m}\left(\Phi_{3}\right) d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R V} F_{4}^{m}\left(\Phi_{4}\right) d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R} F_{5}^{m}\left(\Phi_{5}\right) d \Phi_{5}
\end{aligned}
$$

Overview of the calculation

Differential N3LO coefficient:

$$
\begin{aligned}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{O}}}{d \mathcal{O}_{m}}= & \int d \Gamma_{H \rightarrow b \bar{b}}^{V V V} F_{2}^{m}\left(\Phi_{2}\right) d \Phi_{2} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V} F_{3}^{m}\left(\Phi_{3}\right) d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R V} F_{4}^{m}\left(\Phi_{4}\right) d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R} F_{5}^{m}\left(\Phi_{5}\right) d \Phi_{5}
\end{aligned}
$$

Overview of the calculation

Differential N3LO coefficient:

$$
\begin{aligned}
\frac{d i f f e r e n t i a l ~ N 3 L O ~ c o e f f i c i e n t: ~}{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 L O}} & d \mathcal{O}_{m}
\end{aligned}=\int d \Gamma_{H \rightarrow b \bar{b}}^{V V V} F_{2}^{m}\left(\Phi_{2}\right) d \Phi_{2} \quad \text { triple-virtual (3 loops, } 2 \text { partons) }
$$

Overview of the calculation

Differential N3LO coefficient:

$$
\begin{aligned}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{~L}}}{d \mathcal{O}_{m}}= & \int d \Gamma_{H \rightarrow b \bar{b}}^{V V V} F_{2}^{m}\left(\Phi_{2}\right) d \Phi_{2} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V} F_{3}^{m}\left(\Phi_{3}\right) d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R V} F_{4}^{m}\left(\Phi_{4}\right) d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R} F_{5}^{m}\left(\Phi_{5}\right) d \Phi_{5}
\end{aligned}
$$

triple-virtual (3 loops, 2 partons)

real double-virtual (2 loops, 3 partons)

double-real virtual (1 loop, 4 partons)

Overview of the calculation

Differential N3LO coefficient:

$$
\begin{aligned}
& \frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{N 3 L O}}{d \mathcal{O}_{m}}= \int d \Gamma_{H \rightarrow b \bar{b}}^{V V V} F_{2}^{m}\left(\Phi_{2}\right) d \Phi_{2} \\
&+\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V} F_{3}^{m}\left(\Phi_{3}\right) d \Phi_{3} \\
&+\int d \Gamma_{H \rightarrow b \bar{b}}^{R R V} F_{4}^{m}\left(\Phi_{4}\right) d \Phi_{4} \\
&+\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R} F_{5}^{m}\left(\Phi_{5}\right) d \Phi_{5} \\
&
\end{aligned}
$$

triple-real (0 loops, 5 partons)

Overview of the calculation

$$
\begin{aligned}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}}}{d \mathcal{O}_{m}}= & \int d \Gamma_{H \rightarrow b \bar{b}}^{V V V} F_{2}^{m}\left(\Phi_{2}\right) d \Phi_{2} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V} F_{3}^{m}\left(\Phi_{3}\right) d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R V} F_{4}^{m}\left(\Phi_{4}\right) d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R} F_{5}^{m}\left(\Phi_{5}\right) d \Phi_{5}
\end{aligned}
$$

$F_{i}^{m}\left(\Phi_{i}\right)$ uses a jet-clustering algorithm to define an m-jet observable from i final-state partons

Each contribution contains soft and collinear IR divergences that cancel upon combination into a suitably-inclusive observable

Projection-to-Born method

We use the Projection-to-Born (P2B) method to deal with the IR divergences [Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

Main idea: construct local counter-terms for the matrix elements projected onto a LO (Born) phase space.

Projection-to-Born method

We use the Projection-to-Born (P2B) method to deal with the IR divergences [Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

Main idea: construct local counter-terms for the matrix elements projected onto a LO (Born) phase space.

Example with $i=5$ partons clustered into $m=2$ jets:

Generated event with $|\mathcal{M}|^{2}$

Projection-to-Born method

We use the Projection-to-Born (P2B) method to deal with the IR divergences [Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

Main idea: construct local counter-terms for the matrix elements projected onto a LO (Born) phase space.

Example with $i=5$ partons clustered into $m=2$ jets:

Generated event with $|\mathcal{M}|^{2}$
$F_{5}^{2}\left(\Phi_{5}\right)$

Projection-to-Born method

We use the Projection-to-Born (P2B) method to deal with the IR divergences [Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

Main idea: construct local counter-terms for the matrix elements projected onto a LO (Born) phase space.

Example with $i=5$ partons clustered into $m=2$ jets:
counter-term

Generated event with $|\mathcal{M}|^{2}$

Projection-to-Born method

$$
|\mathcal{M}|^{2} \times\left(F_{5}^{2}\left(\Phi_{5}\right)-F_{2}^{2}\left(\Phi_{B}\right)\right)
$$

The IR divergences cancel exactly when the full phase space matches the Born-projected phase space.

This is the triple-unresolved region.

Born phase space in the Higgs rest frame:

$$
\Phi_{B}=\left\{p_{1}, p_{2}\right\} \quad p_{1}=\frac{m_{H}}{2}\left(1, \mathbf{n}_{j}\right) \quad p_{2}=\frac{m_{H}}{2}\left(1,-\mathbf{n}_{j}\right)
$$

with \mathbf{n}_{j} the direction of the leading jet.

Projection-to-Born method

To restore the N3LO coefficient we need to add back the counter-term that we arbitrarily subtracted:

$$
\begin{aligned}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}}}{d \mathcal{O}_{m}}= & +\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V}\left[F_{3}^{m}\left(\Phi_{3}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R V}\left[F_{4}^{m}\left(\Phi_{4}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R}\left[F_{5}^{m}\left(\Phi_{5}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{5} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{V V V} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{2}+\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R V} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{4}+\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{5}
\end{aligned}
$$

Projection-to-Born method

To restore the N3LO coefficient we need to add back the counter-term that we arbitrarily subtracted:

$$
\begin{aligned}
& \frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}}}{d \mathcal{O}_{m}}=+\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V}\left[F_{3}^{m}\left(\Phi_{3}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R V}\left[F_{4}^{m}\left(\Phi_{4}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R}\left[F_{5}^{m}\left(\Phi_{5}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{5} \\
& \begin{array}{l}
+\int d \Gamma_{H \rightarrow b \bar{b}}^{V V V} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{2}+\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{3} \\
+\int d \Gamma_{H \rightarrow b \bar{b}}^{R R V V} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{4}+\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{5}
\end{array} \\
& \frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}, \text { incl }}}{d \mathcal{O}_{m}^{B}}=\int \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{B}
\end{aligned}
$$

Ingredient 1: Inclusive N3LO H $\rightarrow \mathrm{b} \overline{\mathrm{b}}$ width as a function of the Born kinematics

Projection-to-Born method

To restore the N3LO coefficient we need to add back the counter-term that we arbitrarily subtracted:

$$
\begin{aligned}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}}}{d \mathcal{O}_{m}}= & +\int_{H}+\int \Gamma_{H \rightarrow b \bar{b}}^{R V V}\left[F_{3}^{m}\left(\Phi_{3}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{3}^{R R V}\left[F_{4 \rightarrow b \bar{b}}^{m}\left(\Phi_{4}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{V V V F_{2}^{m}}\left(\Phi_{B}\right) d \Phi_{2}+\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R R V} F_{2}^{n}\left(\Phi_{B}\right) d \Phi_{4}+\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R} F_{2}^{m}\left(\Phi_{B}\right) d \Phi_{5} \\
& \frac{d \Delta \Gamma_{H \rightarrow b \bar{b} j}^{\mathrm{NNLO}}}{d \mathcal{O}_{m}}-\frac{d \Delta \Gamma_{H \rightarrow b \bar{b} j}^{\mathrm{NNLO}}}{d \mathcal{O}_{m}^{B}}
\end{aligned}
$$

Ingredient 2: Differential NNLO $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b} j}$ width and its Born projection

Differential NNLO H \rightarrow bbj width

$$
\begin{aligned}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b} j}^{N N L O}}{d \mathcal{O}_{m}}= & \int d \Gamma_{H \rightarrow b \bar{b} j}^{V V} F_{3}^{m}\left(\Phi_{3}\right) d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b} j}^{R V} F_{4}^{m}\left(\Phi_{4}\right) d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b} j}^{R R} F_{5}^{m}\left(\Phi_{5}\right) d \Phi_{5}
\end{aligned}
$$

Differential NNLO H \rightarrow bbj width

$$
\begin{aligned}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b} j}^{\mathrm{NNLO}}}{d \mathcal{O}_{m}}= & \int d \Gamma_{H \rightarrow b \bar{b} j}^{V V} F_{3}^{m}\left(\Phi_{3}\right) d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b} j}^{R V} F_{4}^{m}\left(\Phi_{4}\right) d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b} j}^{R R} F_{5}^{m}\left(\Phi_{5}\right) d \Phi_{5}
\end{aligned}
$$

two-loop amplitudes
\checkmark for $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}} \mathrm{g}$

Differential NNLO H \rightarrow bbj width

$$
\begin{aligned}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b} j}^{\mathrm{NNLO}}}{d \mathcal{O}_{m}}= & \int d \Gamma_{H \rightarrow b \bar{b} j}^{V V} F_{3}^{m}\left(\Phi_{3}\right) d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b} j}^{R V} F_{4}^{m}\left(\Phi_{4}\right) d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b} j}^{R R} F_{5}^{m}\left(\Phi_{5}\right) d \Phi_{5}
\end{aligned}
$$

two-loop amplitudes

\checkmark for $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}} \mathrm{g}$

one-loop amplitudes for $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b} g g}$ and $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}} \overline{\mathrm{q}}$

Differential NNLO H \rightarrow bbj width

$$
\begin{aligned}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b} j}^{\mathrm{NNLO}}}{d \mathcal{O}_{m}}= & \int d \Gamma_{H \rightarrow b \bar{b} j}^{V V} F_{3}^{m}\left(\Phi_{3}\right) d \Phi_{3} \\
& +\int d \Gamma_{H \rightarrow b \bar{b} j}^{R V} F_{4}^{m}\left(\Phi_{4}\right) d \Phi_{4} \\
& +\int d \Gamma_{H \rightarrow b \bar{b} j}^{R R} F_{5}^{m}\left(\Phi_{5}\right) d \Phi_{5}
\end{aligned}
$$

two-loop amplitudes

\checkmark for $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}} \mathrm{g}$

one-loop amplitudes for $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b} g g}$ and $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b} q} \bar{q}$

Differential NNLO H \rightarrow bbj width

Two-loop $\mathrm{H} \rightarrow$ b $\overline{\mathrm{b}}$ g amplitudes calculated using the MIs from [Gehrmann, Remiddi hep-ph/0008287 and hep-ph/0101124]

Checks:

- IR poles against the known IR structure [Catani hep-ph/9802439]
- Finite part against an independent calculation [Ahmed, Mahakhud, Mathews, Rana, Ravindran 1405.2324]
- Two-loop soft/collinear-gluon limits

One-loop $\mathrm{H} \rightarrow 4$ partons amplitudes calculated analytically using generalized unitarity for helicity amplitudes [Bern, Dixon, Dunbar, Kosower hep-ph/9403226]

Tree-level $\mathrm{H} \rightarrow 5$ partons amplitudes calculated using BCFW recursion relations [Britto, Cachazo, Feng, Witten hep-th/0501052]

N -jettiness slicing

We regulate the IR divergences present in our NNLO H $\rightarrow \mathrm{b} \overline{\mathrm{bj}}$ calculation by using N-jettiness slicing [Boughezal, Focke, Liu, Petriello 1504.02131; Gaunt, Stahlhofen, Tackmann, Walsh 1505.04794]. For a parton-level event we define the 3-jettiness variable [Stewart, Tackmann, Waalewijn 1004.2489]:

$$
\tau_{3}=\sum_{j=1, m} \min _{i=1,2,3}\left\{\frac{2 q_{i} \cdot p_{j}}{Q_{i}}\right\}
$$

- The index j runs over the m partons in the phase space
- The momenta q_{i} are the momenta of the three most energetic jets
- $Q_{i}=2 E_{i}$ with E_{i} the energy of the i-th jet.

N -jettiness slicing

$$
H \rightarrow b \bar{b} j \text { at NNLO }
$$

$$
\tau_{3}=\sum_{j=1, m} \min _{i=1,2,3}\left\{\frac{2 q_{i} \cdot p_{j}}{Q_{i}}\right\} \approx 0
$$

Doubly-unresolved region
All radiation is either soft or collinear

N -jettiness slicing

$$
H \rightarrow b \bar{b} j \text { at NNLO }
$$

At least one parton is resolved

N-jettiness slicing

Introduce a variable $\tau_{3}^{\text {cut }}$ that separates the phase space into two regions:

N -jettiness slicing

Introduce a variable $\tau_{3}^{\text {cut }}$ that separates the phase space into two regions:

- The region $\tau_{3}<\tau_{3}^{\text {cut }}$ contains all of the doubly-unresolved regions of phase space and here the decay width is approximated using this factorization theorem from SCET [Stewart, Tackmann, Waalewijn 0910.0467]:

$$
\Gamma_{H \rightarrow b \bar{b} j}\left(\tau_{3}<\tau_{3}^{\mathrm{cut}}\right) \approx \int \prod_{i=1}^{3} \mathcal{J}_{i} \otimes \mathcal{S} \otimes \mathcal{H}+\mathcal{O}\left(\tau_{3}^{\mathrm{cut}}\right)
$$

Jet functions
[Becher, Neubert hep-ph/0603140]

Soft function
[Boughezal, Liu, Petriello
1504.02540; Campbell, Ellis,

RM, Williams 1711.09984]

Hard function
(finite part of the two-loop amplitudes)

N -jettiness slicing

Introduce a variable $\tau_{3}^{\text {cut }}$ that separates the phase space into two regions:

- The region $\tau_{3}<\tau_{3}^{\text {cut }}$ contains all of the doubly-unresolved regions of phase space and here the decay width is approximated using this factorization theorem from SCET [Stewart, Tackmann, Waalewijn 0910.0467]:

$$
\Gamma_{H \rightarrow b \bar{b} j}\left(\tau_{3}<\tau_{3}^{\mathrm{cut}}\right) \approx \int \prod_{i=1}^{3} \mathcal{J}_{i} \otimes \mathcal{S} \otimes \mathcal{H}+\mathcal{O}\left(\tau_{3}^{\text {cut }}\right)
$$

Jet functions
[Becher, Neubert
hep-ph/0603140]

Soft function
[Boughezal, Liu, Petriello
1504.02540; Campbell, Ellis,

RM, Williams 1711.09984]

Hard function
(finite part of the two-loop amplitudes)

- The region $\tau_{3}>\tau_{3}^{\text {cut }}$ contains the singly-unresolved and fully-resolved regions. It is the NLO calculation of $H \rightarrow b \bar{b} j j$. In our case we regulate the IR divergences using Catani-Seymour dipoles [hep-ph/9605323].

Results

We have implemented our NNLO $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}_{\mathrm{j}}$ calculation into a parton-level MC code based on MCFM [Campbell, Ellis et all.

We use the Durham jet algorithm. Starting at the parton level, for every pair of partons (i, j):

$$
y_{i j}=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)}{Q^{2}}
$$

If $y_{i j}<y_{\text {cut }}$ the pairs are combined into a new object with momentum $p_{i}+p_{j}$.
The algorithm repeats until no further clusterings are possible and the remaining objects are classified as jets.

We present results in the Higgs rest frame.

Validation of the $\mathrm{H} \rightarrow \mathrm{bbj}$ NNLO N -jettiness calculation

Dependence of the NNLO H $\rightarrow 3 \mathrm{j}$ coefficient on the unphysical parameter $\tau_{3}^{\text {cut }}$ for three clustering options

Asymptotic behavior is established in each region.
$y_{\text {cut }}=0.0001$ corresponds
to imposing a very weak
jet cut

P2B with N-jettiness slicing

$$
\begin{array}{rlr}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}}}{d \mathcal{O}_{m}}=\begin{array}{l}
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}, \text { incl }}}{d \mathcal{O}_{m}^{B}}
\end{array} & \begin{array}{l}
\text { Differential } \\
\text { NNLO } \mathrm{H} \rightarrow \mathrm{~b} \overline{\mathrm{bj}}
\end{array} \\
& +\int d \Gamma_{H \rightarrow b \bar{b}}^{R V V}\left[F_{3}^{m}\left(\Phi_{3}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{3} & \\
\text { calculation usir } \\
\text { N-jettiness slici }
\end{array}
$$

Problem when $m=2$: how to define 3-jettiness for 2 -jet events?

P2B with N-jettiness slicing

Focus on triple-real contribution as an example:

$$
\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R}\left[F_{5}^{m}\left(\Phi_{5}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{5}
$$

$F_{5}^{m}\left(\Phi_{5}\right)$ picks out the various jet topologies (2-, 3-, 4-, or 5 -jet events):

P2B with N-jettiness slicing

Focus on triple-real contribution as an example:

$$
\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R}\left[F_{5}^{m}\left(\Phi_{5}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{5}
$$

$F_{5}^{m}\left(\Phi_{5}\right)$ picks out the various jet topologies (2-, 3-, 4-, or 5-jet events):
a) events with 3 or more jets:
straightforward to compute 3-jettiness

P2B with N-jettiness slicing

Focus on triple-real contribution as an example:

$$
\int d \Gamma_{H \rightarrow b \bar{b}}^{R R R}\left[F_{5}^{m}\left(\Phi_{5}\right)-F_{2}^{m}\left(\Phi_{B}\right)\right] d \Phi_{5}
$$

$F_{5}^{m}\left(\Phi_{5}\right)$ picks out the various jet topologies (2-, 3-, 4-, or 5 -jet events):
b) events with 2 jets: reverse last step of clustering to obtain exactly 3 sub-jets. Then apply 3-(sub)jettiness slicing.

Validation of the P2B+SCET method at NNLO

We introduce the transverse momentum and pseudo-rapidity of the leading jet with respect to a fictitious beam axis to fully test the IR cancellations

Validation at N3LO

Dependence of the 2-jet N3LO coefficient on the 3-(sub)jettiness slicing parameter $\tau_{3}^{\text {cut }}$

in this region change
in N3LO coefficient
is about 1%

Use
$\tau_{3}^{\text {cut }}=0.02 \mathrm{GeV}$
for predictions

Jet fractions

The observed pattern is similar to the results obtained for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ jets at the same order [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 0802.0813; Weinzierl 0807.3241]

Results for $\mathbf{H} \rightarrow \mathbf{b b}$ at N3LO

The size of the corrections is observable-dependent. The scale dependence is considerably reduced as higher-order terms are included.

Results for $\mathbf{H} \rightarrow \mathbf{b b}$ at N3LO

Can broadly observe three regions:

1) LO boundary: all phase spaces contribute, good convergence of the series and small residual scale dependence
2) "Bulk": only phase spaces with 3+ partons contribute, NNLO-like calculation
3) "Tail": only phase spaces with 4+ partons contribute, NLO-like calculation

Conclusions

- At the CEPC, we will probe most Higgs couplings to the 1% level.
- Precise theoretical predictions for Higgs observables are needed to successfully compare theory and experiment.
- We computed the $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ decay at N3LO accuracy focusing on the contribution in which the Higgs boson couples directly to massless bottom quarks.
- Using the Projection-to-Born method +N -jettiness slicing, we produced differential distributions and jet rates in the Higgs rest frame.
- Our calculation could be used outside of the rest frame for LHC/CEPC applications.

Extra slides

Inclusive N3LO H \rightarrow bb width

Can be obtained through the optical theorem by computing the massless $\mathcal{O}\left(\alpha_{s}^{3}\right)$ four-loop correlator of the quark-scalar current [Chetyrkin hep-ph/9608318]

$$
\begin{aligned}
\Delta \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{N} 3 \mathrm{LO}}= & \Gamma_{H \rightarrow b \bar{b}}^{\mathrm{LO}}\left(\frac{\alpha_{s}}{\pi}\right)^{3}\left[s_{3}+L\left(2 s_{2} \beta_{0}+s_{1} \beta_{1}+2 s_{2} \gamma_{m}^{0}+2 s_{1} \gamma_{m}^{1}+2 \gamma_{m}^{2}\right)\right. \\
& +L^{2}\left(s_{1} \beta_{0}^{2}+3 s_{1} \beta_{0} \gamma_{m}^{0}+\beta_{1} \gamma_{m}^{0}+2 s_{1}\left(\gamma_{m}^{0}\right)^{2}+2 \beta_{0} \gamma_{m}^{1}+4 \gamma_{m}^{0} \gamma_{m}^{1}\right) \\
& \left.+L^{3}\left(\frac{2}{3} \beta_{0}^{2} \gamma_{m}^{0}+2 \beta_{0}\left(\gamma_{m}^{0}\right)^{2}+\frac{4}{3}\left(\gamma_{m}^{0}\right)^{3}\right)\right]
\end{aligned}
$$

$$
L=\log \left(\mu^{2} / m_{H}^{2}\right)
$$

Results for $\mathbf{H} \rightarrow \mathbf{b b}$ at N3LO

Can broadly observe three regions:

1) At $\mathrm{LO} m_{j}=0$. Must ensure that first bin be inclusive enough for IR cancellations. Large corrections
2) "Bulk": phase spaces with 3+ partons contribute, NNLO-like calculation
3) "Tail": phase spaces with 4+ partons contribute, NLO-like calculation

Two-loop amplitudes for $\mathrm{H} \rightarrow \mathbf{b b g}$

Soft-gluon limit: $p_{3} \rightarrow 0$ which means $y, z \rightarrow 0$ simultaneously

$$
\begin{aligned}
2 \operatorname{Re}\left(\mathcal{M}_{H \rightarrow b \bar{b} g}^{(2)} \mathcal{M}_{H \rightarrow b \bar{b} g}^{(0) *}\right) \rightarrow & 2 \operatorname{Re}\left(S^{(0)}(y, z) \mathcal{M}_{H \rightarrow b \bar{b}}^{(2)} \mathcal{M}_{H \rightarrow b \bar{b}}^{(0) *}\right. \\
& +S^{(1)}(y, z) \mathcal{M}_{H \rightarrow b \bar{b}}^{(1)} \mathcal{M}_{H \rightarrow b \bar{b}}^{(0) *} \\
& \left.+S^{(2)}(y, z) \mathcal{M}_{H \rightarrow b \bar{b}}^{(0)} \mathcal{M}_{H \rightarrow b \bar{b}}^{(0) *}\right)
\end{aligned}
$$

$$
y=z=10^{-10}
$$

Coefficient	Known limit	Our result
ϵ^{-4}	81.7702729678	81.7702729678
ϵ^{-3}	3818.49680411	3818.49680413
ϵ^{-2}	130763.8079162	130763.8079168
ϵ^{-1}	$3.26338843478 \cdot 10^{6}$	$3.26338843480 \cdot 10^{6}$
ϵ^{0}	$6.52342650778 \cdot 10^{7}$	$6.52342650793 \cdot 10^{7}$

Two-loop amplitudes for $\mathrm{H} \rightarrow \mathbf{b b g}$

Collinear limit: $t \rightarrow 0$ which means $y \rightarrow 0$ while z is fixed

$$
\begin{aligned}
2 \operatorname{Re}\left(\mathcal{M}_{H \rightarrow b \bar{b} g}^{(2)} \mathcal{M}_{H \rightarrow b \bar{b} g}^{(0) *}\right) \rightarrow & 2 \operatorname{Re}\left(C^{(0)}(y, z) \mathcal{M}_{H \rightarrow b \bar{b}}^{(2)} \mathcal{M}_{H \rightarrow b \bar{b}}^{(0) *}\right. \\
& +C^{(1)}(y, z) \mathcal{M}_{H \rightarrow b b \bar{b}}^{(1)} \mathcal{M}_{H \rightarrow b \bar{b}}^{(0) *} \\
& \left.+C^{(2)}(y, z) \mathcal{M}_{H \rightarrow b b \bar{b}}^{(0)} \mathcal{M}_{H \rightarrow b \bar{b}}^{(0) *}\right)
\end{aligned}
$$

$$
\begin{aligned}
& y=10^{-12} \\
& z=0.23
\end{aligned}
$$

Coefficient	Known limit	Our result
ϵ^{-4}	283.156234427	283.156234427
ϵ^{-3}	8122.55721506	8122.55721505
ϵ^{-2}	170379.942318	170379.942317
ϵ^{-1}	$2.584146 \cdot 10^{6}$	$2.584189 \cdot 10^{6}$
ϵ^{0}	$3.09852 \cdot 10^{7}$	$3.09870 \cdot 10^{7}$

