Status of CEPC-AHCAL R&D

Jiechen Jiang

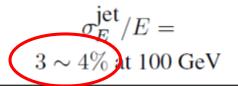
On behalf of the CEPC Calorimeter working Group

State Key Laboratory of Particle Detection and Electronics, China Institute of High Energy Physics, CAS

OutLine

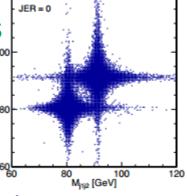
- Background introduction of CEPC-AHCAL
- Optimization of scintillator and SiPM
- Study for massive integration of detector cell
- summary

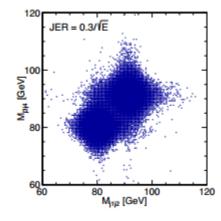
Background introduction

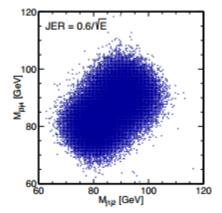


Requirement of jet energy resolution [1]

$$H \to q\bar{q},\,WW^*,\,ZZ^* \qquad {\rm BR}(H \to q\bar{q},\,WW^*,\,ZZ^*)$$


$$BR(H \to q\bar{q}, WW^*, ZZ^*)$$


ECAL HCAL



Typical jet components

- 60% charged particles
- 30% photons
- 10% neutral hadrons

PFA Oriented Calorimeter

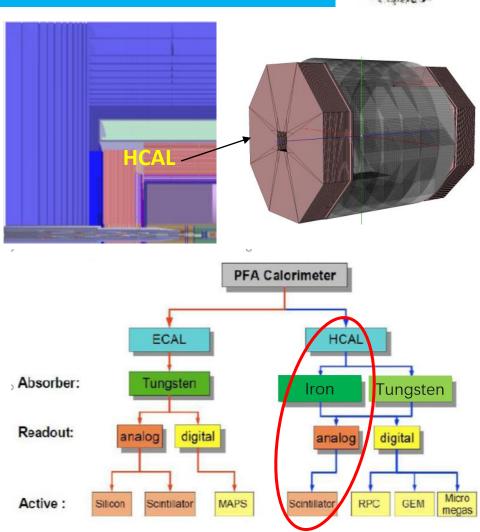
$$\sigma_{\text{jet}}^{2} = \omega_{\text{trk}} \sigma_{\text{trk}}^{2} + \omega_{\text{y}} \sigma_{\text{y}}^{2} + \omega_{\text{n}} \sigma_{\text{n}}^{2} + \sigma_{\text{confusion}} + \sigma_{X}$$
Charged particles

Neutral hadrons

HCAL 50%/ \sqrt{E}

[1]http://cepc.ihep.ac.cn/CEPC CDR Vol2 Physics-Detector.pdf

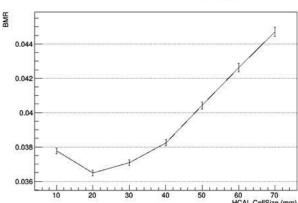
Background introduction

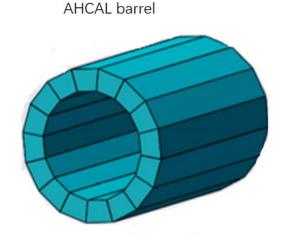


Characters of Calorimeter

- ➤ High granularity
- ➤ Compact showers
 - small radiation length
 - moliere radius
- ➤ Minimal dead region

Hadronic Calorimeter(HCAL)


- Digital HCAL (DHCAL):RPC & MPGD(GEM and THGEM)
- Analog HCAl (AHCAL)
 Plastic scintillator+SiPM


Background introduction

- Analog hadron calorimeter in CEPC-CDR
- The absorber: 2cm Stainless steel $(0.12\lambda_1, 1.14X_0)$;
- Detector cell size: 3cm×3cm or 4cm× 4cm;
- The sensitive detector: Scintillator(organic scintillator);
- About 40 sensitive layers, total readout channel: ≈7
 Million (3cm × 3cm)

BMR - HCAL Cell Size
BMR: Boson Mass Resolution at
di-jet final states
BMR*sqrt(2) = Jet Energy Resolution
BMR better than 4%

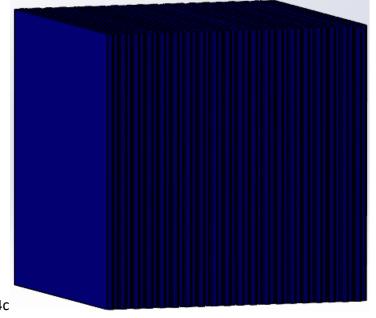
AHCAL super module

AHCAL endcap

AHCAL Project for CEPC

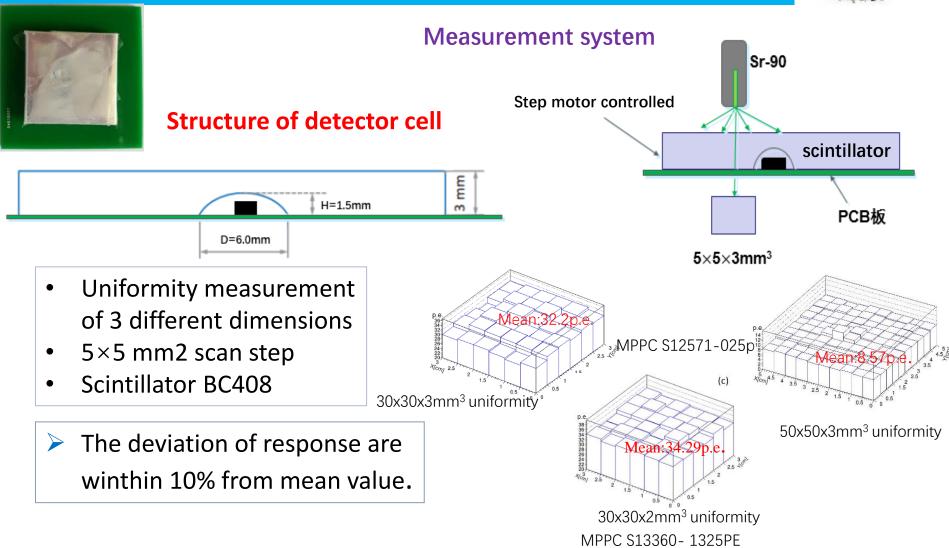
Initiated by the CEPC MOST-2 R&D project in 2018

AHCAL option was considered the project later


-Scintillator+SiPM technology

AHCAL prototype

- The absorber: 2cm Stainless steel (0.12 λ_1 , 1.14 X_0);
- Detector cell size: 3cm×3cm or 4cm× 4cm;
- The sensitive detector: Scintillator;
- SiPM: MPPC or NDL;
- About 40 sensitive layers, total readout channel:

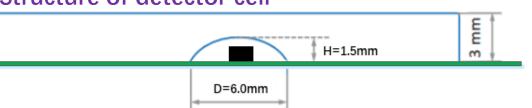

11560 (3cmx3cm), 12960 (4cmx4cm)

Dimension: 51cm*51cm (3cmx3cm), 72cm*72cm (4cmx4c

AHCAL detector cell uniformity measurement

Optimization of AHCAL detector cell

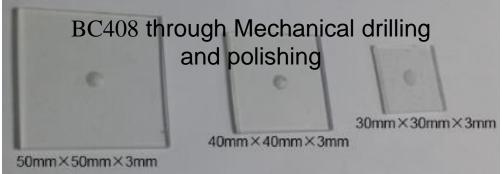
Table 1 Cosmic-ray measurement results of detector cells with different sizes₽


No.₽	Detector Cell₽	MPPC Type₽	Reflective Foil Type	Mean $N_{p,e}$.	Polishing Methods₽
1₽	30×30×3mm ³ ₽	S12571-025 P ₽	ESR₽	31.39±0.65¢	Ultra Precise Polishing
2₽	30×30×3mm ³ ₽	S12571-025 P ₽	ESR₽	22.55±0.7₽	Precise Polishing₽
3₽	30×30×3mm ³ ₽	S12571-025 P ₽	ESR.	18.92±0.39¢	Rough Polishing₽
4₽	$30\times30\times3mm^{3}$	S12571-025 P ₽	TYVEK₽	13.63±0.33¢	Precise Polishing
5₽	40×40×3 mm 3ي	S12571-025 P ₽	ESR₽	14.89±0.73₽	Precise Polishing₽
6₽	50×50×3 mm ³₽	S12571-025P₽	ESR₽	9.87±0.43₽	Precise Polishing₽
7₽	30×30×2mm ³ ₽	S13360-1325PE₽	ESR₽	33.89±0.49¢	Precise Polishing₽

- For same size of detector cell, polishing method is very important;
- Different reflective foil: ESR is better than TYVEK;
- The bigger size detector cell, the less p.e. detected;
- Detector cell is 30mmx30mmx3mm packed with ESR at present.

Requirement of detector cell

Structure of detector cell



Uniformity measurement:
The deviation of response are winthin 10% from mean value.

Characters of BC408:

- High light yield
- Complicated drilling and polishing
- Bad consistency
- High cost
- Long processing period

Scintillator Type BC408

Expectation:

- Massive production
- Good consistency
- > Low cost

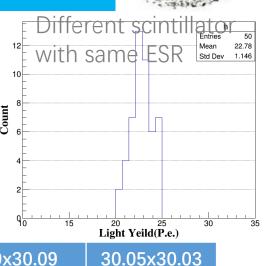
Cratf of Tiles

> Short period

No Polishing

Motivation: Suitable recipe and craft

Requirement:


- Light Yeild:23p.e.
- Deviation: $\pm 10\%$

Chinese injection scintillator

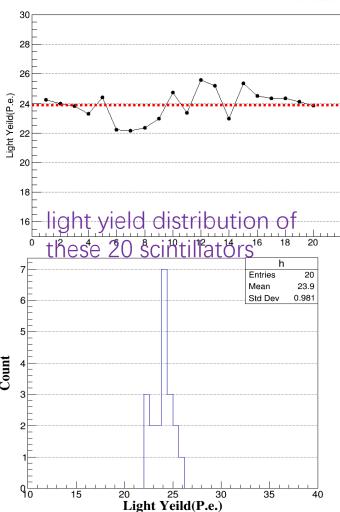
- Made by Injection molding (custommade and 8 iterations of recipe testing)
- Without polished, smooth
- Dimension deviation below 50um from each other (30 tiles)
- Light yield winthin 10% deviation

x3.09

23.54

Tiles size(mm)	30.08x30.01 x3.08	30.07x30.04 x3.09	30.04x30.02 x3.09	30.09x30.09 x3.09	30.0
Light yield(p.e.)	23.5	22.78	22.86	25.02	
3,30	design	ESR cut by mo	uld	Detector cell wrapped with E	SR

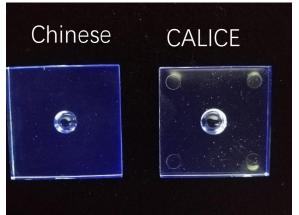
The effect of ESR cut by mould is good and it has few gap, ESR and detector cell can be wrapped compactly.


uniformity of Chinese scintillator

Light yield measurement with different scintillator and ESR films

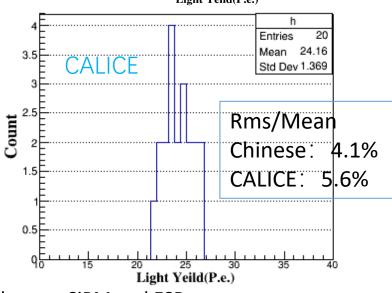
Scintillator	1	2	3	4	5
Light yield(p.e.)	24.25	23.97	23.82	23.29	24.23
Scintillator	6	7	8	9	10
Light yield(p.e.)	22.22	22.17	22.34	22.98	24.73
Scintillator	11	12	13	14	15
Light yield(p.e.)	23.38	25.6	25.21	22.98	25.36
Scintillator	16	17	18	19	20
Light yield(p.e.)	24.52	24.33	24.36	24.12	23.85

The deviation of response are winthin 10% from mean value. For AHCAL detector cell could be massively produced now.


Compare with CALICE scintillator

Condition:

Scintillator: Two types
SiPM: MPPC12571-025P
Size: 30mmX30mmX3mm


Characters:

 More flat for Chinese scintillator

	F	THE PARTY OF
	⁷ Chinese	Entries 20 Mean 23.9 Std Dev 0.981
	5	
Count	4	
ŭ	3	
	2	
	1	
	Q 15 20 25 30 Light Yeild(P.e.)	35 40
	Light Yeild(P.e.)	

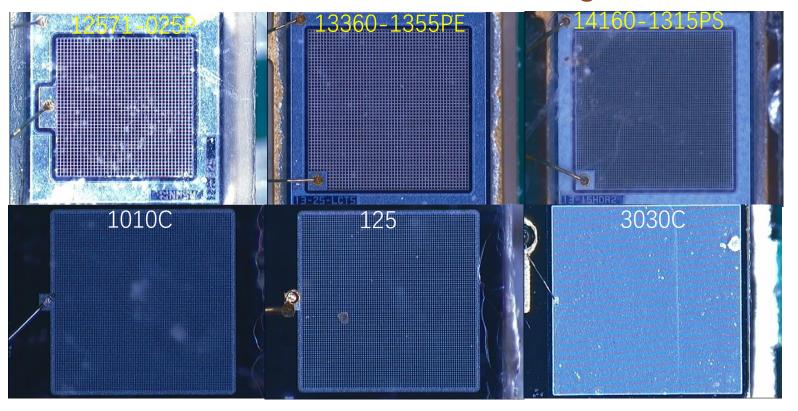
Sample	1	2	3	4	5
Light output (p.e.)	22.21	23.13	25.77	25.21	23.52
Sample	6	7	8	9	10
Light output (p.e.)	21.57	23.5	23.8	24.2	22.8
Sample	11	12	13	14	15
Light output (p.e.)	26.69	23.25	22.44	25.75	25.32
Sample	16	17	18	19	20
Light output (p.e.)	26.28	24.83	24.54	23.53	24.68

Measurement used 20 scintillators of Chinese and CALICE with same SiPM and ESR.

Result:

- From mean value, light yield of Chinese and CALICE is 23.9p.e. and 24.1p.e. respectively.
- From value of Rms/Mean, the uniformity of Chinese Sc is better than CALICE.

Candidate SiPMs for AHCAL



NDL-SiPM:

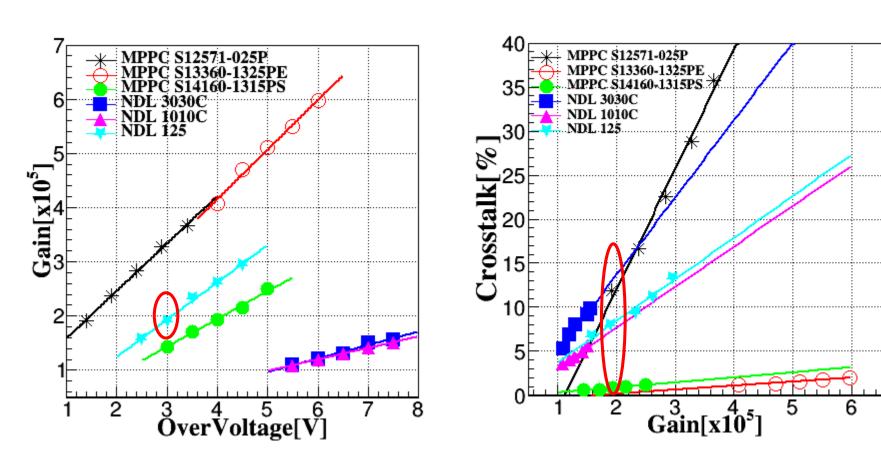
- High fill factor
- High gain
- Cheap
- Low breakdown
- -High dark rate
- -High crosstalk

MPPC-SiPM:

- Low dark rate
- Low crosstalk
- -Expensive
- -High breakdown

Comparison of different SiPMs

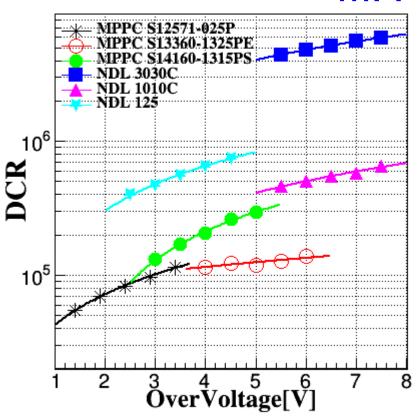
MPPC VS NDL

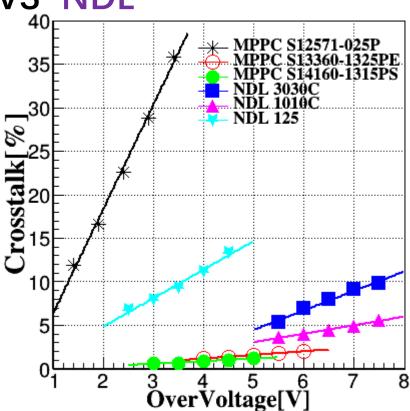

Company		MPPC			NDL	
Type	1251- 025P	13360-1325PE	14160- 1315PS	1010C	3030C	125
Active area[mm ²]	1	1.69	1.69	1	9	1
Pixel number	1600	2700	4400	10000	90000	6400
Breakdown[V]	65	53	38	27.5	27.5	21.5
Overvoltage[V]	3.4	4	5	6.5	6.5	3
Dark counts[kHz]	82	120	290	550	5150	470
Crosstalk[%]	22.6	1.59	1.17	4.4	8	8.1
Gain[10 ⁵]	2.83	5.11	2.5	1.295	1.3	1.91

All parameters are measured in laboratory at room temperature.

Gain & Crosstalk of different SiPMs

MPPC VS NDL

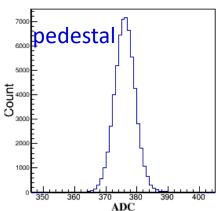



The value of gain which can be calibrated with SPIROC2E is marked on red circle.

DCR & Crosstalk of different SiPMs

- SiPMs from MPPC with lower DCR and crosstalk characteristics, except type 12571-025P.
- Type 13360-1325PE is a better one for CEPC-AHCAL detector cell.

Calibrated by SPIROC2E

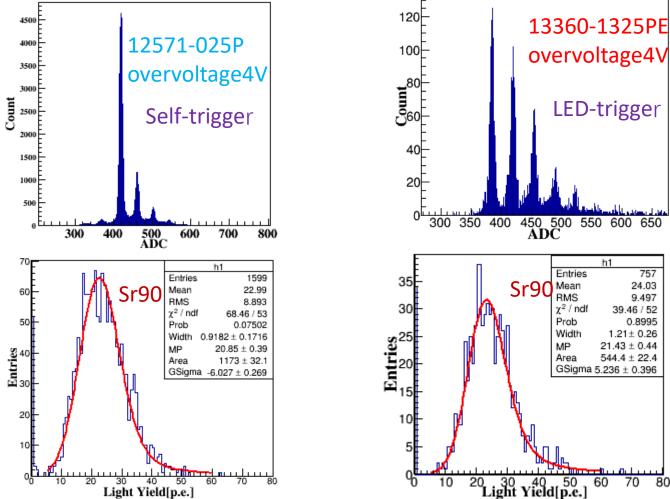


SPIROC2E


(SiPM Integrated Read Out Chip)

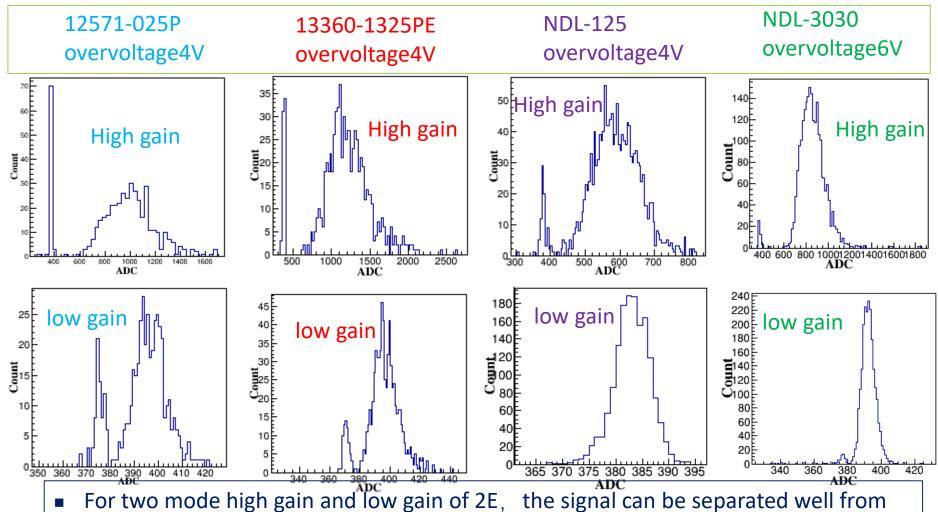
Electronics of AHCAL at present

Selftrigger: For MPPC type 12571-025P and NDL-125, different gain of SPIROC2E can be distinguish photon peaks clearly based on multiphoton spectrum.



 Thus NDL SiPM can work for SPIROC2E₀

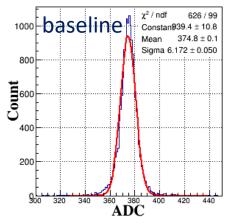
Light yield measurement with SPIROC2E (500)

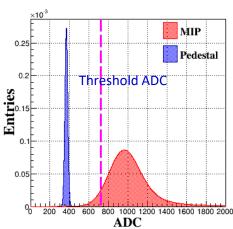


- The photon peaks can be separated well for both these two types of MPPC.
- It is not much different for light yield with SPIROC2E or MPPC electronics.

Response of Sr90

- pedestal showed on last slide.


 NDI-125 can work at high gain mode. However, MIP signal can be senarated at low
- NDL-125 can work at high gain mode. However, MIP signal can be separated at low gain mode. NDL-3030C can work well at high overvoltage.

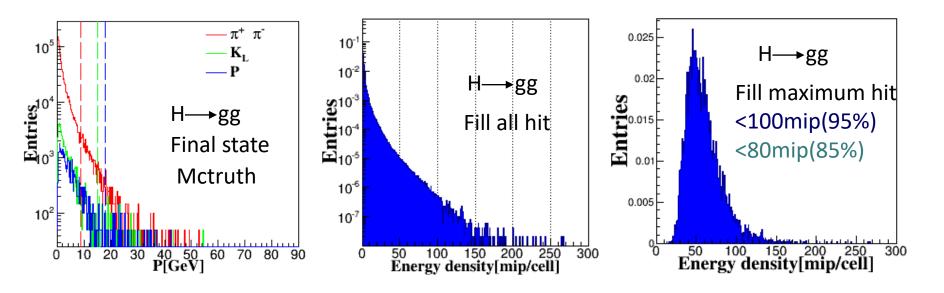

Pedestal Comparison

MPPC VS NDL

Electronic: SPIROC2E

Туре	pedestal	MIP	Threshold ADC
MPPC 12571-025P	$8.90e^{-16}$	95%	722.18
MPPC 13360-1325PE	$7.15e^{-16}$	95%	843.75
MPPC 14160-1315PS	$7.49e^{-16}$	95%	417.04
NDL 1010C	$3.61e^{-13}$	95%	389.52
NDL 125	$8.37e^{-16}$	95%	396.84
NDL 3030C	$3.81e^{-16}$	95%	447.72

For different SiPMs


- the pedestal width would be different.
- Signal could be separated well at external mode of electronics.

- Dark noisy.
- Capacity.

Dynamic requirement of SiPM

Distribution of Final State particles decayed from H→gg

- Momentum of More than 95% particles are below 20GeV.
- More than 99% of energy density is less than 25MIP in all AHCAL hits.

MIP response of different SiPMs

MPPC VS NDL

Electronic: SPIROC2E

Company	MPPC			NDL		
Туре	1251- 025P	13360- 1325PE	14160- 1315PS	1010C	3030C	125
Pedestal Width[ADC]	6.172	3.997	13.51	3.718	5.596	3.61
Pedestal Width _[fc]	294	191	643	177	266	172
Overvoltage[V]	3.4	4	5	6.5	6.5	3
MIP [ADC]	542	719	395	107	450	135
S/N	87.9	179.9	29.3	28.8	80.5	37.4
Linear range[MIP]	26	40	61	200	200	118

- All type of SiPMs can satisfy the dynamic range requirement of AHCAL
- Type 13360-1325PE can be acquired a better MIP signal from S/N.

High gain1 PC~210ADC S/N=MIP/peddstal

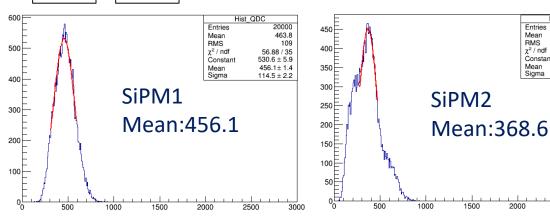
Parallel connection of detector cell

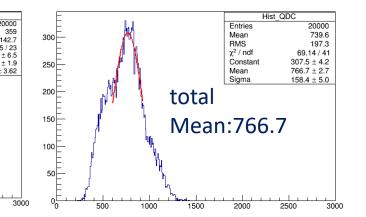
Reduce the channel number

LED trigger

quickly judge the

measurement systems Schematic


SiPM1 LED1 Parallel connection SiPM2 LED2


Change the light intensity of LED

Mean

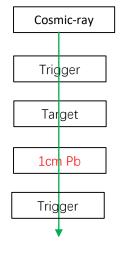
RMS

SiPM1(ADC)	625.9	979.7	703.6	456.1
SiPM2(ADC)	169.4	259.3	392.1	368.6
SiPM mergence(ADC)	714.8	1180	1007	766.7

Change the condition of LED, the signal of merging SiPM is the sum of single SiPM.

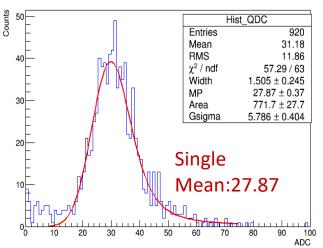
1500

2000

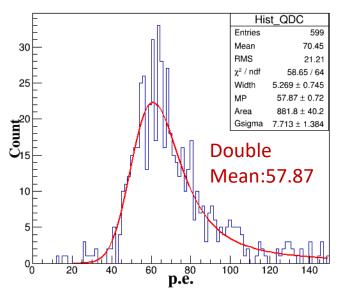

2500

The measurement system can work normally without scintillator.

Measurement of merging detector cell



Schematic



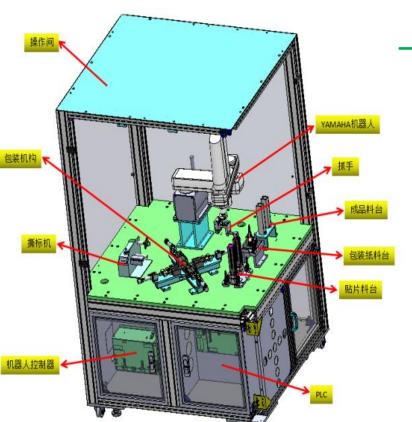
Most of gamma radiation can be shielded by 1cm thickness Pb.

$$I = I_0 e^{-\sigma_r N x} = I_0 e^{-\mu x}$$

能 量/MeV	衰减	系数
能 量/MeV	钨"	铅
0.1	64.8	60.4
0.2	11.5	10.6
0.5	2.14	1.70
1.0	1.08	0.77
1.25	0.929	0.598

☐ The signal of merging SiPM is near 2 times compared with single SiPM after shielding most of gamma radiation. It is consistent with theory.

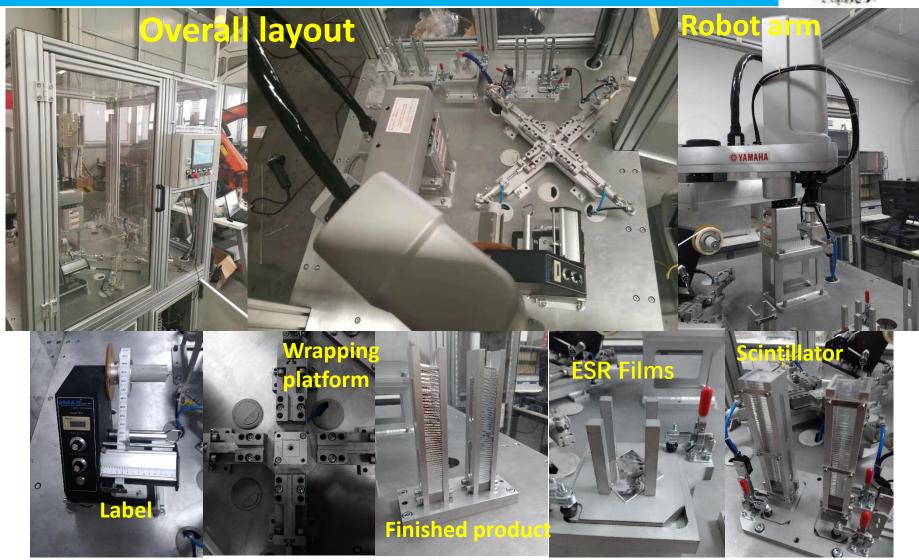
Detector cell Automatic assemble system



—Motivation:

7M detector cells;

 Reflective foils packaging can't be done by manual;

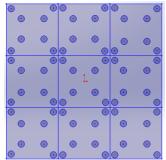

—Progress

- Companies give their preliminary design;
- Robotic arm design is a novel way;

It can be used for 2cm*2cm, 3cm*3cm and 4cm*4cm detector cell;

Automatic packing machine

Detector cell gluing experiment

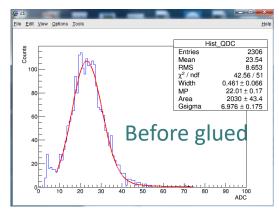


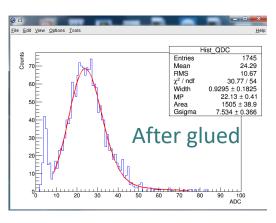
motivation:

In order to quickly and effectively realize the integration of large area AHCAL detection unit.

Materials:

- 1. Araldite 2011 epoxy glue
- 3×3 PCB board
- Detector cell;
- 4. A film used to brush glue



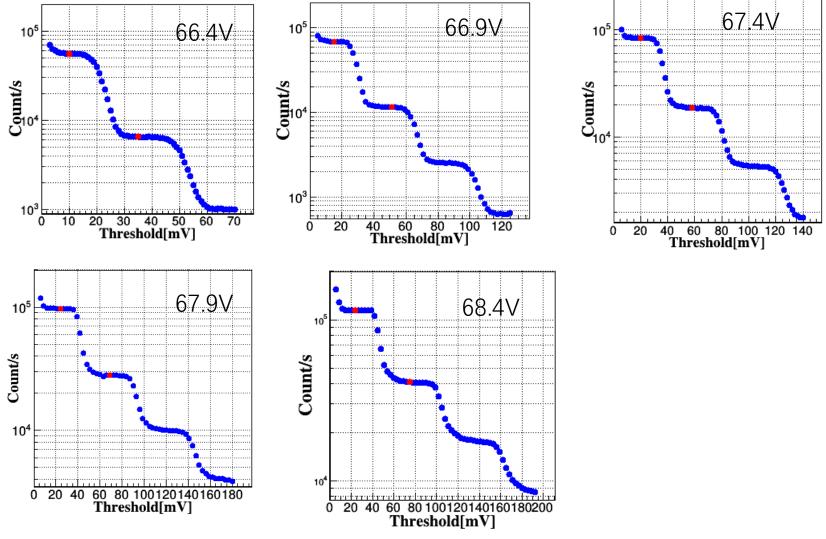


Result:

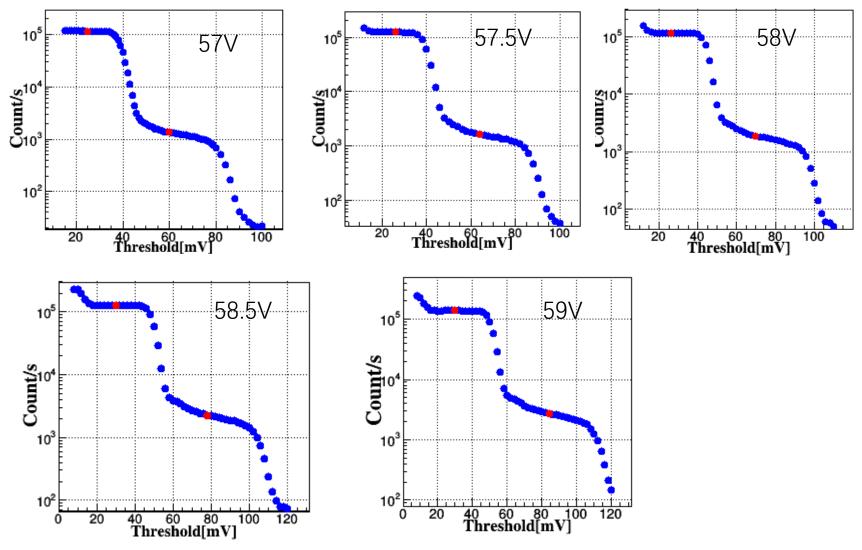
- 1. This way is working;
- 2. The detector cell was glued on PCB fasten;
- 3. Maybe reduce to 4 glue hole;
- 4. Plan to test crosstalk and prototype.

Light output

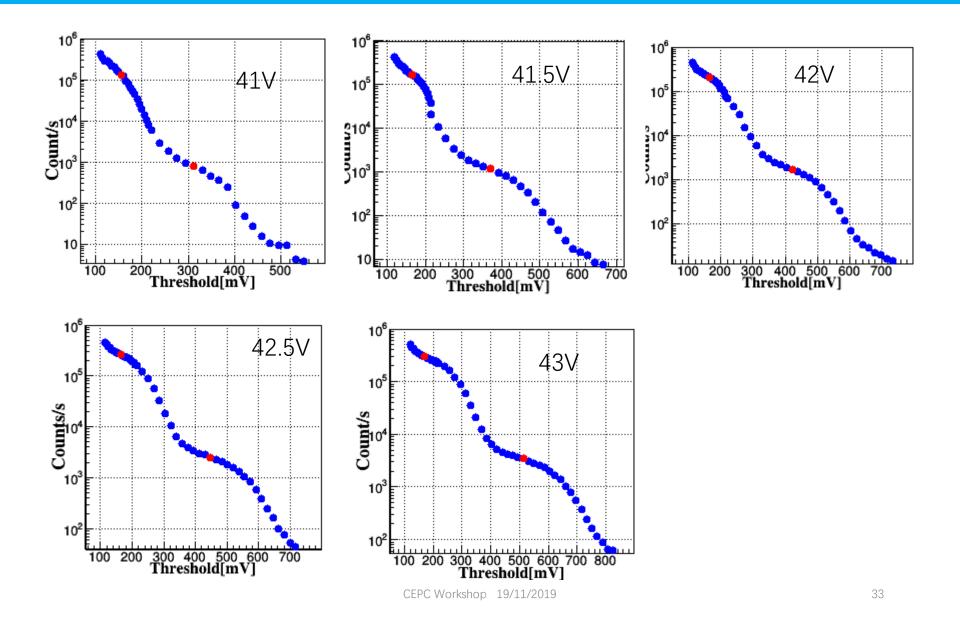
Summary

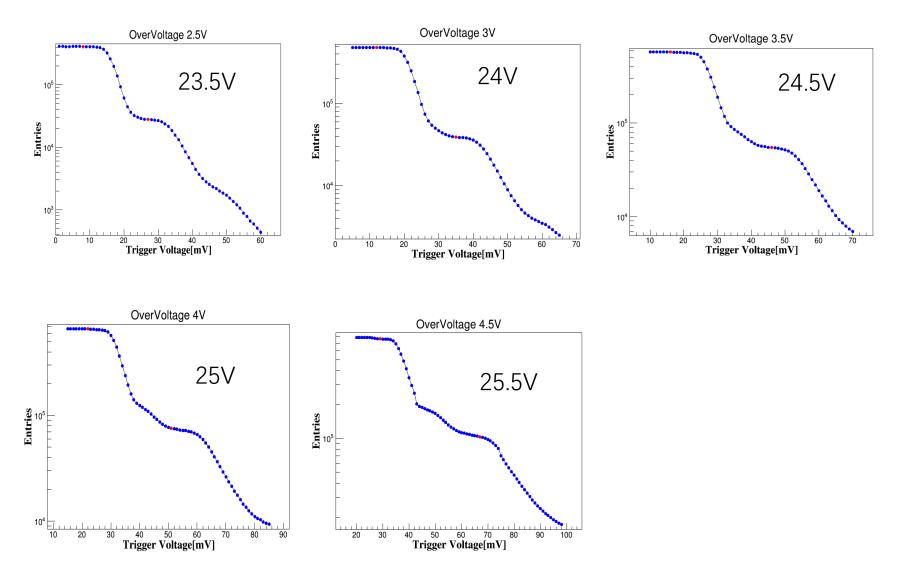


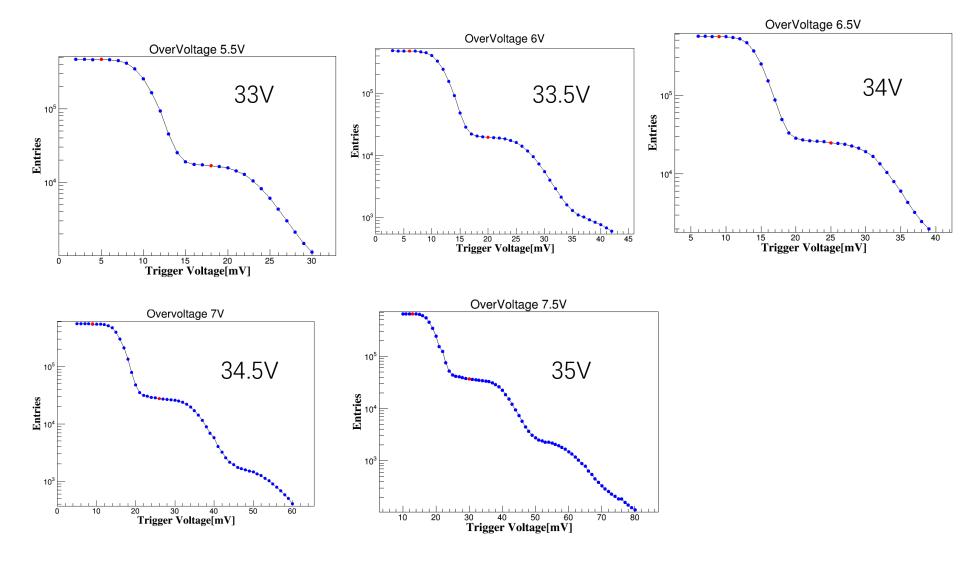
- 30mmx30mmx3mm detector cell of AHCAL could work well and could be massively produced later.
- Candidate SiPMs of AHCAL could satisfy dynamic range requirement, good S/N from MIP spectrum at external mode of electronics.
- The feasibility of detector cells with parallel connection read-out and scheme about massively gluing on PCB of tiles.
- Optimization of 40mmx40mmx3mm detector cells is on going.

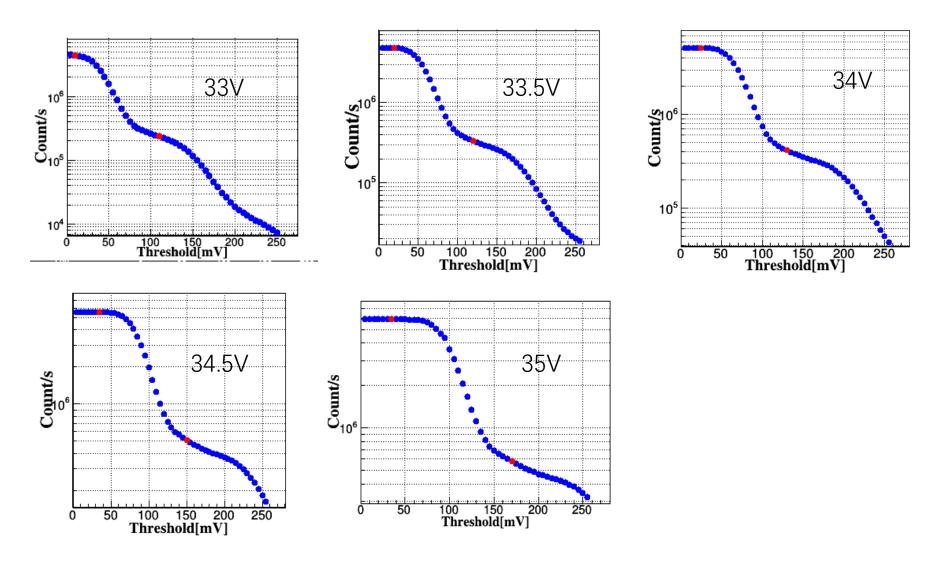

Thanks for your attention!

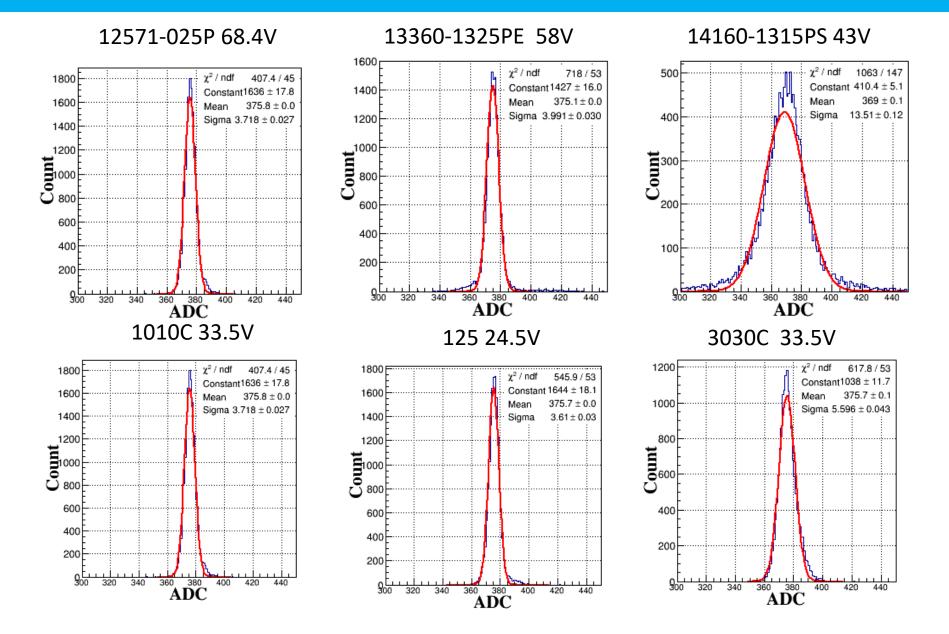
Backup

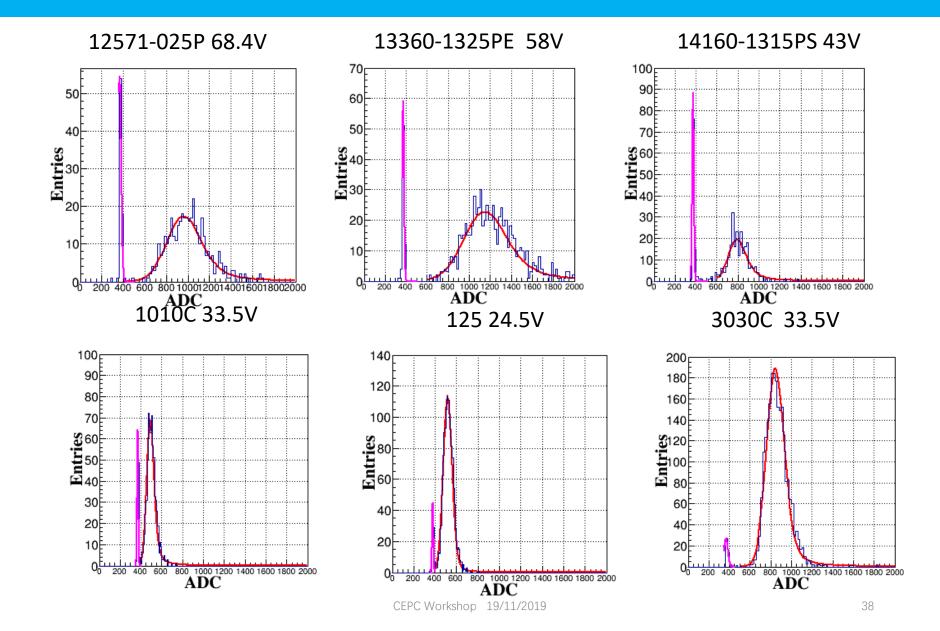

MPPC 12571-025P

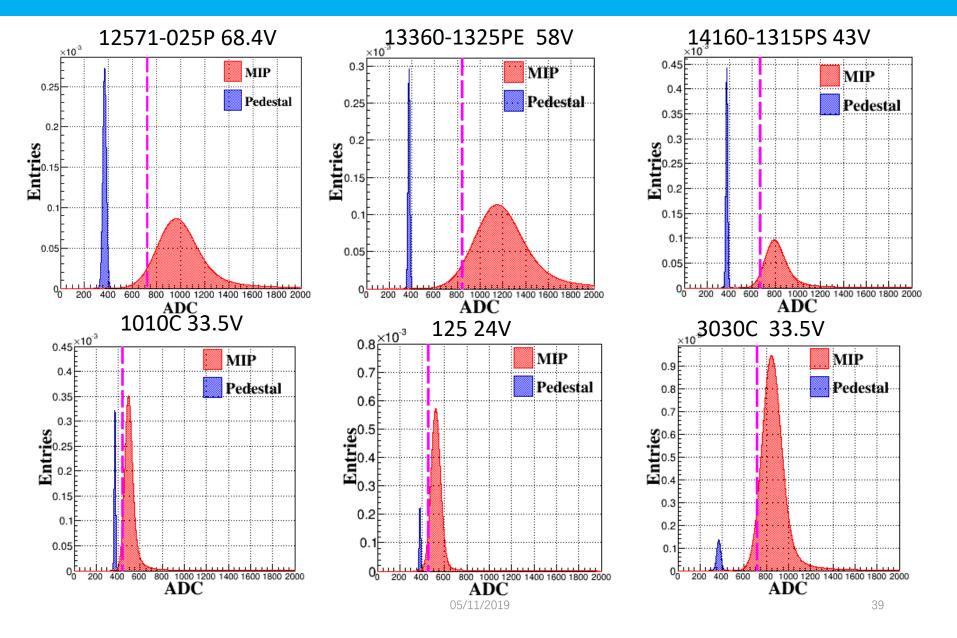

MPPC 13360-1325PE


MPPC 14160-1315PS


NDL 125


NDL 1010C


NDL 3030C


Pedestal

MIP Spectrum

%95 Efficiency cut of MIP

Different batches Injection scintillator

Detector cell:

Szie:30mm*30mm*3mm

SiPM:S12571-029P ESR Cut by mould

The First batch

Size	30.08x30.0	30.07x30.04x	30.04x30.02x	30.09x30.09x	30.05x30.03x
(mm^3)	1x3.08	3.09	3.09	3.09	3.09
Light Yeild(p.e.)	15.24	13.55	13.03	12.08	

The Second batch

Number	1	2	3	4	5	6
Light yeild(p.e.)	18	8.16	18.36	15.61	17.93	19.26
Number	7	8	9	10	11	12
Light yeild(p.e.)	18.32	17.11	15	9.86	10.78	9.94

Result:

- Low Light yeild
- Bad consistenc between different scintillator tiles

Different batches Injection scintillator

The third, fourth, fifth batch

The Third batch	1	2	3	4	5	6
Light Yeild(p.e.)	17.79	18.06	18.12	16.7	16.26	16.5

- The third batch of tiles had low light yield
- The fourth batch had bad consistency after adding more PPO
- The fifth batch of tiles also had low light yield

The Fourth batch	1	2	3	4	5
Light Yeild(p.e.)	22.35	22.18	19.58	19.62	21.59
The Fourth batch	6	7	8	9	10
Light Yeild(p.e.)	20.63	21.01	18.98	19.13	19.08

The Fifth batch	1	2	3	4	5
Light Yeild(p.e.)	20.3	20.77	20.82	20.96	20.21
The Fifth batch	6	7	8	9	10
Light Yeild(p.e.)	21.68	18.77	19.73	20.04	20.18

Different batches Injection scintillator

The sixth batch of tiles

The sixth batch	1	2	3	4	5
Light Yeild(p.e.)	23.52	23.95	22.98	23.77	21.79
The sixth batch	6	7	8	9	10
Light Yeild(p.e.)	23.68	22.77	21.35	22.12	21.44

The seventh batch of tiles

The seventh batch	1	2	3	4	5
Light Yeild(p.e.)	21.64	21.84	21.72	20.35	20.60

- □ The average of the sixth is around 22.74p.e., deviation below 3p.e..
- □ The seventh batch is also low and need to be improved.