Precise measurement of m_W and Γ_W using threshold scan method Peixun Shen¹, Gang Li², Paolo Azzurri³, Zhijun Liang², Chunxu Yu¹ ¹NKU, ²IHEP, ³INFN Pisa 2019 International Workshop on CEPC 2019/11/18-20, IHEP #### Outline - > Motivation - > Methodology - > Statistical and systematic uncertainties - Data taking schemes - > Summary #### Motivation ➤ The m_W plays a central role in precision EW measurements and in constraint on the SM model through global fit. $$G_F = \frac{\pi\alpha}{\sqrt{2}m_W^2 \sin^2\theta_W} \frac{1}{(1+\Delta r)}$$ Δr is the correction, whose leading-order contributions depend on the m_t and m_H - \triangleright Several ways to measure m_W : - The direct method, with kinematically-constrained or mass reconstructions - Using the lepton end-point energy - \blacksquare W⁺W⁻ threshold scan method (this study) #### Methodology > Why? $$\sigma_{WW}(m_W, \Gamma_W, \sqrt{s}) = \frac{N_{obs}}{L \epsilon P}$$ $(P = \frac{N_{WW}}{N_{WW} + N_{bkg}})$ so m_W , Γ_W can be obtained by comparing the N_{obs} / LeP, with predicted σ_{WW} > How? In general, these uncertainties are dependent on \sqrt{s} , so it is an optimization problem when considering the data taking. ➤If ..., then? With the configurations of L, ΔL , ΔE ..., we can obtain: $m_W \sim ? \Gamma_W \sim ?$ #### Theoretical Tool The σ_{WW} is a function of \sqrt{s} , m_W and Γ_W , calculated with the GENTLE package in this work (CC03) The ISR correction calculated by convoluting the Born cross sections with QED structure function, with the radiator up to $NLO(\alpha^2)$ and $O(\beta^3)$ ## Statistical and systematic uncertainties li.gang@ihep.ac.cn #### Statistical uncertainty With $$L=3.2ab^{-1}$$, $\epsilon=0.8$, $P=0.9$: Δm_W =0.6 MeV, $\Delta \Gamma_W$ =1.4 MeV (individually) ### Statistical uncertainty - \triangleright When there are more than one data point, we can measure both m_W and Γ_W . - \triangleright With the χ^2 defined as: $$\chi^2 = \sum_{i} \frac{(N_{\text{fit}^i} - N_{\text{obs}}^i)^2}{N_{\text{obs}}^i} = \frac{(\mathcal{L}\epsilon P)^i (\sigma_{\text{fit}}^i - \sigma_{\text{obs}}^i)^2}{\sigma_{\text{obs}}^i}$$ the error matrix is in the form: $$V = \frac{1}{2} \times \begin{pmatrix} \frac{\partial^{2} \chi^{2}}{\partial m_{W}^{2}} & \frac{\partial^{2} \chi^{2}}{\partial m_{W} \partial \Gamma_{W}} \\ \frac{\partial^{2} \chi^{2}}{\partial m_{W} \partial \Gamma_{W}} & \frac{\partial^{2} \chi^{2}}{\partial m_{\Gamma_{W}}^{2}} \end{pmatrix}^{-1} = \sum_{i} \begin{pmatrix} \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} (\frac{\partial \sigma}{\partial m_{W}})^{2} & \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} \frac{\partial \sigma}{\partial m_{W}} \frac{\partial \sigma}{\partial \Gamma_{W}} \\ \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} \frac{\partial \sigma}{\partial m_{W}} \frac{\partial \sigma}{\partial \Gamma_{W}} & \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} (\frac{\partial \sigma}{\partial m_{W}})^{2} \end{pmatrix}^{-1}$$ ➤ When the number of fit parameter reduce to 1: The parameter reduce to 1: $$\Delta m_W = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \Delta \sigma_{WW} = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}}$$ ## Statistical uncertainty #### Systematic uncertainty #### Energy calibration uncertainty \triangleright With $\triangle E$, the total energy becomes: $$E = G(E_p, \Delta E) + G(E_m, \Delta E)$$ The Δm_W will be large when ΔE increase, but almost independent on \sqrt{s} . #### Energy spread uncertainty \triangleright With E_{BS} , the σ_{WW} becomes: $$\sigma_{WW}(E) = \int_0^\infty \sigma_{WW}(E') \times G(E, E') dE'$$ $$= \int \sigma(E') \times \frac{1}{\sqrt{2\pi}\delta_E} e^{\frac{-(E-E')^2}{2\sigma_E^2}} dE'$$ - $\triangleright \sigma_E + \Delta \sigma_E$ is used in the simulation, and σ_E is for the fit formula. - \succ The m_W insensitive to δ_E when taking data around 162. 3 GeV ## Background uncertainty The effect of background are in two different ways 1. Stat. part: $$\Delta m_W(N_B) = \frac{\partial m_W}{\partial \sigma_{WW}} \cdot \frac{\sqrt{L\epsilon_B \sigma_B}}{L\epsilon}$$ 2. Sys. part: $$\Delta m_W(\sigma_B) = \frac{\partial m_W}{\partial \sigma_{WW}} \cdot \frac{L\epsilon_B \sigma_B}{L\epsilon} \cdot \Delta \sigma_B$$ With L=3.2ab⁻¹, $$\epsilon_B \sigma_B = 0.3$$ pb, $\Delta \sigma_B = 10^{-3}$: $\Delta m_W(N_B) \sim 0.2$ MeV, which has been embodied in the product of $\epsilon \cdot P$, and $\Delta m_W(\sigma_B)$ is considerable with the former. ## Correlated sys. uncertainty - \triangleright The correlated sys. uncertainty includes: ΔL , $\Delta \epsilon$, $\Delta \sigma_{WW}$... - \triangleright Since $N_{obs} = L \cdot \sigma \cdot \epsilon$, these uncertainties affect σ_{WW} in same way. - > We use the total correlated sys. uncertainty in data taking optimization: $$\delta_c = \sqrt{\Delta L^2 + \Delta \epsilon^2}$$ $$\Delta m_W = rac{\partial m_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c$$, $\Delta \Gamma_W = rac{\partial \Gamma_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c$ ## Correlated sys. uncertainty $$\Delta m_W = \frac{\partial m_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c$$ Two ways to consider to effect: (a) Gaussian distribution $$\sigma_{WW} = G(\sigma_{WW}^0, \delta_c \cdot \sigma_{WW}^0)$$ (b) Non-Gaussian (will cause shift) $$\sigma_{WW} = \sigma_{WW}^0 \times (1 + \delta_c)$$ With $$\delta_c = +1.4 \cdot 10^{-4} (10^{-3})$$ at 161.2GeV $\Delta m_W \sim 0.24 \text{MeV}$ (3MeV) ## Correlated sys. uncertainty To consider the correlation, the scale factor method is used, $$\chi^{2} = \sum_{i}^{n} \frac{(y_{i} - h \cdot x_{i})^{2}}{\delta_{i}^{2}} + \frac{(h-1)^{2}}{\delta_{c}^{2}},$$ where y_i , x_i are the true and fit results, h is a free parameter, δ_i and δ_c are the independent and correlated uncertainties. For the Gaussian consideration, the scale factor can reduce the effect. For the non-Gaussian case, the shift of the m_W is controlled well #### Data taking scheme One point Two points Three points or more - Smallest Δm_W , $\Delta \Gamma_W$ (stat.) - Large sys. uncertainties - Only for m_W or Γ_W , without correlation - Measure m_W and Γ_W simultanously - Without the correlation • Measure m_W and Γ_W simultaneously, with the correlation #### Taking data at one point (just for m_W) #### There are two special energy points: \triangleright The one most statistical sensitivity to m_W : $$\Delta m_W(\text{stat.}) \sim 0.59 \text{ MeV}$$ at $E=161.2 \text{ GeV}$ (with $\Delta\Gamma_W$ and ΔE_{BS} effect) ightharpoonup The one $\Delta m_W(\mathrm{stat}) \sim 0.65~\mathrm{MeV}$ at $E \approx 162.3~\mathrm{GeV}$ (with negligible $\Delta\Gamma_W$, ΔE_{BS} effects) With $$\Delta L (\Delta \epsilon) < 10^{-4}, \Delta \sigma_B < 10^{-3}, \Delta E = 0.7 \text{MeV},$$ $\Delta \sigma_E = 0.1, \Delta \Gamma_W = 42 \text{MeV})$ | \sqrt{s} (GeV) | 161.2 | 162.3 | |----------------------------|-------|-------| | E | 0.36 | 0.37 | | $\sigma_{\!E}$ | 0.20 | - | | $\sigma_{\!B}$ | 0.17 | 0.17 | | δ_c | 0.24 | 0.34 | | $\Gamma_{\! m W}$ | 7.49 | - | | Stat. | 0.59 | 0.65 | | $\Delta m_W^{}({\sf MeV})$ | 7.53 | 0.84 | #### Taking data at two energy points To measure Δm_W and $\Delta \Gamma_W$, we scan the energies and the luminosity fraction of the two data points: 1. $$E_1, E_2 \in [155, 165] \text{ GeV}, \Delta E = 0.1 \text{ GeV}$$ 2. $$F \equiv \left(\frac{L_1}{L_2}\right) \in (0, 1), \ \Delta F = 0.05$$ We define the object function: $T = m_W + 0.1\Gamma_W$ to optimize the scan parameters (assuming m_W is more important than Γ_W). #### Taking data at two energy points - ➤ The 3D scan is performed, and 2D plots are used to illustrate the optimization results; - When draw the ΔT change with one parameter, another is fixed with scanning of the third one; - E_1 =157.5 GeV, E_2 =162.5 GeV (around $\frac{\partial \sigma_{WW}}{\partial \Gamma_W}$ =0, $\frac{\partial \sigma_{WW}}{\partial E_{BS}}$ =0) and F=0.3 are taken as the result. | (MeV) | E | σ_E | σ_B | δ_c | Stat. | Total | |----------------------|------|------------|------------|------------|-------|-------| | Δm_W | 0.38 | - | 0.21 | 0.33 | 0.80 | 0.97 | | $\Delta\Gamma_{\!W}$ | 0.54 | 0.56 | 1.38 | 0.20 | 2.92 | 3.32 | #### Taking data at three energy points The procedure of three points optimization is similar to two points | E_1 | 157.5 GeV | | |-------|-----------|--| | E_2 | 162.5 GeV | $\Delta m_W \sim 0.98 \text{ MeV}$ | | E_3 | 161.5 GeV | $\Delta \Gamma_W \sim 3.37 \text{ MeV}$ | | F_1 | 0.3 | * | | F_2 | 0.9 | | | | | $\Delta L(\Delta\epsilon) < 10^{-4}, \Delta\sigma_B < 10^{-3}$
$\sigma_E = 1 \times 10^{-3}, \Delta E = 0.7 \text{MeV}$ | $\Delta \sigma_E = 0.1$ #### Summary - \triangleright Measurement of m_W (Γ_W) with threshold scan method studied - > Different data taking schemes investigated, take stat. and sys. into account. - > CEPC&FCC-ee work together, EPJC refereeing - > With assumptions $$\Delta L(\Delta \epsilon) < 10^{-4}, \Delta \sigma_B < 10^{-3}$$ $\sigma_E = 1 \times 10^{-3}, \Delta E = 0.7 \text{MeV}$ $\Delta \Gamma_W = 42 \text{MeV}, \Delta \sigma_E = 0.1$ | Data-taking
scheme | mass or width | δ _{stat} (MeV) | ΔE | $\delta_{\rm sys}$ (1) $\Delta \sigma_E$ | $\frac{\text{MeV}}{\delta_B}$ | δ_c | Total (MeV) | |-----------------------|--------------------------------|-------------------------|--------------|--|-------------------------------|--------------|--------------| | One point | Δm_W | 0.65 | 0.37 | - | 0.17 | 0.34 | 0.84 | | Two points | $\Delta m_W \ \Delta \Gamma_W$ | 0.80
2.92 | 0.38
0.54 | 0.56 | 0.21
1.38 | 0.33
0.20 | 0.97
3.32 | | Three points | $\Delta m_W \ \Delta \Gamma_W$ | 0.81
2.93 | 0.30
0.52 | 0.55 | 0.23
1.38 | 0.29
0.20 | 0.98
3.37 | ## Thank you! ## Backup Slides #### Covariance matrix method $$y_i = \frac{n_i}{\epsilon}, \ v_{ii} = \sigma_i^2 + y_i^2 \sigma_f^2$$ where σ_i is the stat. error of n_i , σ_f is the relative error of ϵ - The correlation between data points i, j contributes to the off-diagonal matrix element v_{ij} : - Then we minimize: $\chi_1^2 = \eta^T V^{-1} \eta$ For this method, The biasness is uncontrollable (MO Xiao-Hu HEPNP 30 (2006) 140-146) 2019 International Workshop on CEPC H. J. Behrend et al. (CELLO Collaboration)Phys. Lett. B 183 (1987) 400D' Agostini G. Nucl. Instrum. Meth. A346 (1994) $$V = \begin{pmatrix} \sigma_1^2 + y_1^2 \sigma_{\rm f}^2 & y_1 y_2 \sigma_{\rm f}^2 & \cdots & y_1 y_n \sigma_{\rm f}^2 \\ y_2 y_1 \sigma_{\rm f}^2 & \sigma_2^2 + y_2^2 \sigma_{\rm f}^2 & \cdots & y_2 y_n \sigma_{\rm f}^2 \\ \vdots & \vdots & \ddots & \vdots \\ y_n y_1 \sigma_{\rm f}^2 & y_n y_2 \sigma_{\rm f}^2 & \cdots & \sigma_n^2 + y_n^2 \sigma_{\rm f}^2 \end{pmatrix}$$ $$\eta = \begin{pmatrix} y_1 - k_1 \\ y_2 - k_2 \\ \vdots \\ y_n - k_n \end{pmatrix}$$ #### Scale factor method \triangleright This method is used by introducing a free fit parameter to the χ^2 : $$\chi_2^2 = \sum_i \frac{(fy_i - k_i)^2}{\sigma_i^2} + \frac{(f-1)^2}{\sigma_f^2}$$ Brandelik R et al(TASSO Collab.). Phys. Lett., 1982, B113: 499—508; Brandelik R et al(TASSO Collab.). Z. Phys., 1980, C4: 87—93 Bartel W et al(JADE Collab.). Phys. Lett., 1983, B129: σ_i includes stat. and uncorrelated sys errors, σ_f are the correlated errors. D'Agostini G. Nucl. Instrum. Methods, 1994, A346: 306—311 The equivalence of this form and the one from matrix method is proved in: MO Xiao-Hu HEPNP 30 (2006) 140-146. - ➤ Both the matrix and the factor approach have bias, which may be considerably striking when the data points are quite many or the scale factor is rather large. - \triangleright According to ref: MO Xiao-Hu HEPNP 31 (2007) 745-749, the unbiased χ^2 is constructed as: $$\chi_3^2 = \sum_i \frac{(y_i - gk_i)^2}{\sigma_i^2} + \frac{(g-1)^2}{\sigma_f^2}$$ (used in our previous results) The central tvalue from χ_2^2 can be re-scaled, the relative argor is still larger than those from χ_3^2 estimation.