

Precise measurement of m_W and Γ_W using threshold scan method

Peixun Shen¹, Gang Li², Paolo Azzurri³, Zhijun Liang², Chunxu Yu¹
¹NKU, ²IHEP, ³INFN Pisa

2019 International Workshop on CEPC 2019/11/18-20, IHEP

Outline

- > Motivation
- > Methodology
- > Statistical and systematic uncertainties
- Data taking schemes
- > Summary

Motivation

➤ The m_W plays a central role in precision EW measurements and in constraint on the SM model through global fit.

$$G_F = \frac{\pi\alpha}{\sqrt{2}m_W^2 \sin^2\theta_W} \frac{1}{(1+\Delta r)}$$

 Δr is the correction, whose leading-order contributions depend on the m_t and m_H

- \triangleright Several ways to measure m_W :
 - The direct method, with kinematically-constrained or mass reconstructions
 - Using the lepton end-point energy
 - \blacksquare W⁺W⁻ threshold scan method (this study)

Methodology

> Why?

$$\sigma_{WW}(m_W, \Gamma_W, \sqrt{s}) = \frac{N_{obs}}{L \epsilon P}$$
 $(P = \frac{N_{WW}}{N_{WW} + N_{bkg}})$

so m_W , Γ_W can be obtained by comparing the N_{obs} / LeP, with predicted σ_{WW}

> How?

In general, these uncertainties are dependent on \sqrt{s} , so it is an optimization problem when considering the data taking.

➤If ..., then?

With the configurations of L, ΔL , ΔE ..., we can obtain: $m_W \sim ? \Gamma_W \sim ?$

Theoretical Tool

The σ_{WW} is a function of \sqrt{s} , m_W and Γ_W , calculated with the GENTLE package in this work (CC03)

The ISR correction calculated by convoluting the Born cross sections with QED structure function, with the radiator up to $NLO(\alpha^2)$ and $O(\beta^3)$

Statistical and systematic uncertainties

li.gang@ihep.ac.cn

Statistical uncertainty

With
$$L=3.2ab^{-1}$$
, $\epsilon=0.8$, $P=0.9$:

 Δm_W =0.6 MeV, $\Delta \Gamma_W$ =1.4 MeV (individually)

Statistical uncertainty

- \triangleright When there are more than one data point, we can measure both m_W and Γ_W .
- \triangleright With the χ^2 defined as:

$$\chi^2 = \sum_{i} \frac{(N_{\text{fit}^i} - N_{\text{obs}}^i)^2}{N_{\text{obs}}^i} = \frac{(\mathcal{L}\epsilon P)^i (\sigma_{\text{fit}}^i - \sigma_{\text{obs}}^i)^2}{\sigma_{\text{obs}}^i}$$

the error matrix is in the form:

$$V = \frac{1}{2} \times \begin{pmatrix} \frac{\partial^{2} \chi^{2}}{\partial m_{W}^{2}} & \frac{\partial^{2} \chi^{2}}{\partial m_{W} \partial \Gamma_{W}} \\ \frac{\partial^{2} \chi^{2}}{\partial m_{W} \partial \Gamma_{W}} & \frac{\partial^{2} \chi^{2}}{\partial m_{\Gamma_{W}}^{2}} \end{pmatrix}^{-1} = \sum_{i} \begin{pmatrix} \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} (\frac{\partial \sigma}{\partial m_{W}})^{2} & \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} \frac{\partial \sigma}{\partial m_{W}} \frac{\partial \sigma}{\partial \Gamma_{W}} \\ \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} \frac{\partial \sigma}{\partial m_{W}} \frac{\partial \sigma}{\partial \Gamma_{W}} & \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} (\frac{\partial \sigma}{\partial m_{W}})^{2} \end{pmatrix}^{-1}$$

➤ When the number of fit parameter reduce to 1:

The parameter reduce to 1:
$$\Delta m_W = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \Delta \sigma_{WW} = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}}$$

Statistical uncertainty

Systematic uncertainty

Energy calibration uncertainty

 \triangleright With $\triangle E$, the total energy becomes:

$$E = G(E_p, \Delta E) + G(E_m, \Delta E)$$

The Δm_W will be large when ΔE increase, but almost independent on \sqrt{s} .

Energy spread uncertainty

 \triangleright With E_{BS} , the σ_{WW} becomes:

$$\sigma_{WW}(E) = \int_0^\infty \sigma_{WW}(E') \times G(E, E') dE'$$

$$= \int \sigma(E') \times \frac{1}{\sqrt{2\pi}\delta_E} e^{\frac{-(E-E')^2}{2\sigma_E^2}} dE'$$

- $\triangleright \sigma_E + \Delta \sigma_E$ is used in the simulation, and σ_E is for the fit formula.
- \succ The m_W insensitive to δ_E when taking data around 162. 3 GeV

Background uncertainty

The effect of background are in two different ways

1. Stat. part:
$$\Delta m_W(N_B) = \frac{\partial m_W}{\partial \sigma_{WW}} \cdot \frac{\sqrt{L\epsilon_B \sigma_B}}{L\epsilon}$$

2. Sys. part:
$$\Delta m_W(\sigma_B) = \frac{\partial m_W}{\partial \sigma_{WW}} \cdot \frac{L\epsilon_B \sigma_B}{L\epsilon} \cdot \Delta \sigma_B$$

With L=3.2ab⁻¹,
$$\epsilon_B \sigma_B = 0.3$$
pb, $\Delta \sigma_B = 10^{-3}$:

 $\Delta m_W(N_B) \sim 0.2$ MeV, which has been embodied in the product of $\epsilon \cdot P$, and $\Delta m_W(\sigma_B)$ is considerable with the former.

Correlated sys. uncertainty

- \triangleright The correlated sys. uncertainty includes: ΔL , $\Delta \epsilon$, $\Delta \sigma_{WW}$...
- \triangleright Since $N_{obs} = L \cdot \sigma \cdot \epsilon$, these uncertainties affect σ_{WW} in same way.
- > We use the total correlated sys. uncertainty in data taking optimization:

$$\delta_c = \sqrt{\Delta L^2 + \Delta \epsilon^2}$$

$$\Delta m_W = rac{\partial m_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c$$
 , $\Delta \Gamma_W = rac{\partial \Gamma_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c$

Correlated sys. uncertainty

$$\Delta m_W = \frac{\partial m_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c$$

Two ways to consider to effect:

(a) Gaussian distribution

$$\sigma_{WW} = G(\sigma_{WW}^0, \delta_c \cdot \sigma_{WW}^0)$$

(b) Non-Gaussian (will cause shift)

$$\sigma_{WW} = \sigma_{WW}^0 \times (1 + \delta_c)$$

With
$$\delta_c = +1.4 \cdot 10^{-4} (10^{-3})$$
 at 161.2GeV
 $\Delta m_W \sim 0.24 \text{MeV}$ (3MeV)

Correlated sys. uncertainty

To consider the correlation, the scale factor method is used,

$$\chi^{2} = \sum_{i}^{n} \frac{(y_{i} - h \cdot x_{i})^{2}}{\delta_{i}^{2}} + \frac{(h-1)^{2}}{\delta_{c}^{2}},$$

where y_i , x_i are the true and fit results, h is a free parameter, δ_i and δ_c are the independent and correlated uncertainties.

For the Gaussian consideration, the scale factor can reduce the effect.

For the non-Gaussian case, the shift of the m_W is controlled well

Data taking scheme

One point

Two points

Three points or more

- Smallest Δm_W , $\Delta \Gamma_W$ (stat.)
- Large sys. uncertainties
- Only for m_W or Γ_W , without correlation

- Measure m_W and Γ_W simultanously
- Without the correlation

• Measure m_W and Γ_W simultaneously, with the correlation

Taking data at one point (just for m_W)

There are two special energy points:

 \triangleright The one most statistical sensitivity to m_W :

$$\Delta m_W(\text{stat.}) \sim 0.59 \text{ MeV}$$
 at $E=161.2 \text{ GeV}$

(with $\Delta\Gamma_W$ and ΔE_{BS} effect)

ightharpoonup The one $\Delta m_W(\mathrm{stat}) \sim 0.65~\mathrm{MeV}$ at $E \approx 162.3~\mathrm{GeV}$

(with negligible $\Delta\Gamma_W$, ΔE_{BS} effects)

With
$$\Delta L (\Delta \epsilon) < 10^{-4}, \Delta \sigma_B < 10^{-3}, \Delta E = 0.7 \text{MeV},$$

 $\Delta \sigma_E = 0.1, \Delta \Gamma_W = 42 \text{MeV})$

\sqrt{s} (GeV)	161.2	162.3
E	0.36	0.37
$\sigma_{\!E}$	0.20	-
$\sigma_{\!B}$	0.17	0.17
δ_c	0.24	0.34
$\Gamma_{\! m W}$	7.49	-
Stat.	0.59	0.65
$\Delta m_W^{}({\sf MeV})$	7.53	0.84

Taking data at two energy points

To measure Δm_W and $\Delta \Gamma_W$, we scan the energies and the luminosity fraction of the two data points:

1.
$$E_1, E_2 \in [155, 165] \text{ GeV}, \Delta E = 0.1 \text{ GeV}$$

2.
$$F \equiv \left(\frac{L_1}{L_2}\right) \in (0, 1), \ \Delta F = 0.05$$

We define the object function: $T = m_W + 0.1\Gamma_W$ to optimize the scan parameters (assuming m_W is more important than Γ_W).

Taking data at two energy points

- ➤ The 3D scan is performed, and 2D plots are used to illustrate the optimization results;
- When draw the ΔT change with one parameter, another is fixed with scanning of the third one;
- E_1 =157.5 GeV, E_2 =162.5 GeV (around $\frac{\partial \sigma_{WW}}{\partial \Gamma_W}$ =0, $\frac{\partial \sigma_{WW}}{\partial E_{BS}}$ =0) and F=0.3 are taken as the result.

(MeV)	E	σ_E	σ_B	δ_c	Stat.	Total
Δm_W	0.38	-	0.21	0.33	0.80	0.97
$\Delta\Gamma_{\!W}$	0.54	0.56	1.38	0.20	2.92	3.32

Taking data at three energy points

The procedure of three points optimization is similar to two points

E_1	157.5 GeV	
E_2	162.5 GeV	$\Delta m_W \sim 0.98 \text{ MeV}$
E_3	161.5 GeV	$\Delta \Gamma_W \sim 3.37 \text{ MeV}$
F_1	0.3	*
F_2	0.9	
		$\Delta L(\Delta\epsilon) < 10^{-4}, \Delta\sigma_B < 10^{-3}$ $\sigma_E = 1 \times 10^{-3}, \Delta E = 0.7 \text{MeV}$

 $\Delta \sigma_E = 0.1$

Summary

- \triangleright Measurement of m_W (Γ_W) with threshold scan method studied
- > Different data taking schemes investigated, take stat. and sys. into account.
- > CEPC&FCC-ee work together, EPJC refereeing
- > With assumptions

$$\Delta L(\Delta \epsilon) < 10^{-4}, \Delta \sigma_B < 10^{-3}$$

 $\sigma_E = 1 \times 10^{-3}, \Delta E = 0.7 \text{MeV}$
 $\Delta \Gamma_W = 42 \text{MeV}, \Delta \sigma_E = 0.1$

Data-taking scheme	mass or width	δ _{stat} (MeV)	ΔE	$\delta_{\rm sys}$ (1) $\Delta \sigma_E$	$\frac{\text{MeV}}{\delta_B}$	δ_c	Total (MeV)
One point	Δm_W	0.65	0.37	-	0.17	0.34	0.84
Two points	$\Delta m_W \ \Delta \Gamma_W$	0.80 2.92	0.38 0.54	0.56	0.21 1.38	0.33 0.20	0.97 3.32
Three points	$\Delta m_W \ \Delta \Gamma_W$	0.81 2.93	0.30 0.52	0.55	0.23 1.38	0.29 0.20	0.98 3.37

Thank you!

Backup Slides

Covariance matrix method

$$y_i = \frac{n_i}{\epsilon}, \ v_{ii} = \sigma_i^2 + y_i^2 \sigma_f^2$$

where σ_i is the stat. error of n_i , σ_f is the relative error of ϵ

- The correlation between data points i, j contributes to the off-diagonal matrix element v_{ij} :
- Then we minimize: $\chi_1^2 = \eta^T V^{-1} \eta$

For this method, The biasness is uncontrollable

(MO Xiao-Hu HEPNP 30 (2006) 140-146) 2019 International Workshop on CEPC H. J. Behrend et al. (CELLO Collaboration)Phys. Lett. B 183 (1987) 400D' Agostini G. Nucl. Instrum. Meth. A346 (1994)

$$V = \begin{pmatrix} \sigma_1^2 + y_1^2 \sigma_{\rm f}^2 & y_1 y_2 \sigma_{\rm f}^2 & \cdots & y_1 y_n \sigma_{\rm f}^2 \\ y_2 y_1 \sigma_{\rm f}^2 & \sigma_2^2 + y_2^2 \sigma_{\rm f}^2 & \cdots & y_2 y_n \sigma_{\rm f}^2 \\ \vdots & \vdots & \ddots & \vdots \\ y_n y_1 \sigma_{\rm f}^2 & y_n y_2 \sigma_{\rm f}^2 & \cdots & \sigma_n^2 + y_n^2 \sigma_{\rm f}^2 \end{pmatrix}$$

$$\eta = \begin{pmatrix} y_1 - k_1 \\ y_2 - k_2 \\ \vdots \\ y_n - k_n \end{pmatrix}$$

Scale factor method

 \triangleright This method is used by introducing a free fit parameter to the χ^2 :

$$\chi_2^2 = \sum_i \frac{(fy_i - k_i)^2}{\sigma_i^2} + \frac{(f-1)^2}{\sigma_f^2}$$

Brandelik R et al(TASSO Collab.). Phys. Lett., 1982, B113: 499—508; Brandelik R et al(TASSO Collab.). Z. Phys., 1980, C4: 87—93
Bartel W et al(JADE Collab.). Phys. Lett., 1983, B129:

 σ_i includes stat. and uncorrelated sys errors, σ_f are the correlated errors. D'Agostini G. Nucl. Instrum. Methods, 1994, A346: 306—311

The equivalence of this form and the one from matrix method is

proved in: MO Xiao-Hu HEPNP 30 (2006) 140-146.

- ➤ Both the matrix and the factor approach have bias, which may be considerably striking when the data points are quite many or the scale factor is rather large.
- \triangleright According to ref: MO Xiao-Hu HEPNP 31 (2007) 745-749, the unbiased χ^2 is constructed as:

$$\chi_3^2 = \sum_i \frac{(y_i - gk_i)^2}{\sigma_i^2} + \frac{(g-1)^2}{\sigma_f^2}$$
 (used in our previous results)

The central tvalue from χ_2^2 can be re-scaled, the relative argor is still larger than those from χ_3^2 estimation.